linux_dsm_epyc7002/arch/x86_64/mm/pageattr.c

243 lines
6.2 KiB
C
Raw Normal View History

/*
* Copyright 2002 Andi Kleen, SuSE Labs.
* Thanks to Ben LaHaise for precious feedback.
*/
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
static inline pte_t *lookup_address(unsigned long address)
{
pgd_t *pgd = pgd_offset_k(address);
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (pgd_none(*pgd))
return NULL;
pud = pud_offset(pgd, address);
if (!pud_present(*pud))
return NULL;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return NULL;
if (pmd_large(*pmd))
return (pte_t *)pmd;
pte = pte_offset_kernel(pmd, address);
if (pte && !pte_present(*pte))
pte = NULL;
return pte;
}
static struct page *split_large_page(unsigned long address, pgprot_t prot,
pgprot_t ref_prot)
{
int i;
unsigned long addr;
struct page *base = alloc_pages(GFP_KERNEL, 0);
pte_t *pbase;
if (!base)
return NULL;
/*
* page_private is used to track the number of entries in
* the page table page have non standard attributes.
*/
SetPagePrivate(base);
page_private(base) = 0;
addr = address & LARGE_PAGE_MASK;
pbase = (pte_t *)page_address(base);
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
pbase[i] = pfn_pte(addr >> PAGE_SHIFT,
addr == address ? prot : ref_prot);
}
return base;
}
static void cache_flush_page(void *adr)
{
int i;
for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
asm volatile("clflush (%0)" :: "r" (adr + i));
}
static void flush_kernel_map(void *arg)
{
struct list_head *l = (struct list_head *)arg;
struct page *pg;
/* When clflush is available always use it because it is
much cheaper than WBINVD */
if (!cpu_has_clflush)
asm volatile("wbinvd" ::: "memory");
list_for_each_entry(pg, l, lru) {
void *adr = page_address(pg);
if (cpu_has_clflush)
cache_flush_page(adr);
}
__flush_tlb_all();
}
static inline void flush_map(struct list_head *l)
{
on_each_cpu(flush_kernel_map, l, 1, 1);
}
static LIST_HEAD(deferred_pages); /* protected by init_mm.mmap_sem */
static inline void save_page(struct page *fpage)
{
list_add(&fpage->lru, &deferred_pages);
}
/*
* No more special protections in this 2/4MB area - revert to a
* large page again.
*/
[PATCH] x86: __pa and __pa_symbol address space separation Currently __pa_symbol is for use with symbols in the kernel address map and __pa is for use with pointers into the physical memory map. But the code is implemented so you can usually interchange the two. __pa which is much more common can be implemented much more cheaply if it is it doesn't have to worry about any other kernel address spaces. This is especially true with a relocatable kernel as __pa_symbol needs to peform an extra variable read to resolve the address. There is a third macro that is added for the vsyscall data __pa_vsymbol for finding the physical addesses of vsyscall pages. Most of this patch is simply sorting through the references to __pa or __pa_symbol and using the proper one. A little of it is continuing to use a physical address when we have it instead of recalculating it several times. swapper_pgd is now NULL. leave_mm now uses init_mm.pgd and init_mm.pgd is initialized at boot (instead of compile time) to the physmem virtual mapping of init_level4_pgd. The physical address changed. Except for the for EMPTY_ZERO page all of the remaining references to __pa_symbol appear to be during kernel initialization. So this should reduce the cost of __pa in the common case, even on a relocated kernel. As this is technically a semantic change we need to be on the lookout for anything I missed. But it works for me (tm). Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-03 00:27:07 +07:00
static void revert_page(unsigned long address, unsigned long pfn, pgprot_t ref_prot)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t large_pte;
pgd = pgd_offset_k(address);
BUG_ON(pgd_none(*pgd));
pud = pud_offset(pgd,address);
BUG_ON(pud_none(*pud));
pmd = pmd_offset(pud, address);
BUG_ON(pmd_val(*pmd) & _PAGE_PSE);
large_pte = pfn_pte(pfn, ref_prot);
large_pte = pte_mkhuge(large_pte);
set_pte((pte_t *)pmd, large_pte);
}
static int
__change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot,
pgprot_t ref_prot)
{
pte_t *kpte;
struct page *kpte_page;
pgprot_t ref_prot2;
kpte = lookup_address(address);
if (!kpte) return 0;
kpte_page = virt_to_page(((unsigned long)kpte) & PAGE_MASK);
if (pgprot_val(prot) != pgprot_val(ref_prot)) {
if (!pte_huge(*kpte)) {
set_pte(kpte, pfn_pte(pfn, prot));
} else {
/*
* split_large_page will take the reference for this
* change_page_attr on the split page.
*/
struct page *split;
ref_prot2 = pte_pgprot(pte_clrhuge(*kpte));
[PATCH] x86: __pa and __pa_symbol address space separation Currently __pa_symbol is for use with symbols in the kernel address map and __pa is for use with pointers into the physical memory map. But the code is implemented so you can usually interchange the two. __pa which is much more common can be implemented much more cheaply if it is it doesn't have to worry about any other kernel address spaces. This is especially true with a relocatable kernel as __pa_symbol needs to peform an extra variable read to resolve the address. There is a third macro that is added for the vsyscall data __pa_vsymbol for finding the physical addesses of vsyscall pages. Most of this patch is simply sorting through the references to __pa or __pa_symbol and using the proper one. A little of it is continuing to use a physical address when we have it instead of recalculating it several times. swapper_pgd is now NULL. leave_mm now uses init_mm.pgd and init_mm.pgd is initialized at boot (instead of compile time) to the physmem virtual mapping of init_level4_pgd. The physical address changed. Except for the for EMPTY_ZERO page all of the remaining references to __pa_symbol appear to be during kernel initialization. So this should reduce the cost of __pa in the common case, even on a relocated kernel. As this is technically a semantic change we need to be on the lookout for anything I missed. But it works for me (tm). Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-03 00:27:07 +07:00
split = split_large_page(pfn << PAGE_SHIFT, prot,
ref_prot2);
if (!split)
return -ENOMEM;
set_pte(kpte, mk_pte(split, ref_prot2));
kpte_page = split;
}
page_private(kpte_page)++;
} else if (!pte_huge(*kpte)) {
set_pte(kpte, pfn_pte(pfn, ref_prot));
BUG_ON(page_private(kpte_page) == 0);
page_private(kpte_page)--;
} else
BUG();
/* on x86-64 the direct mapping set at boot is not using 4k pages */
BUG_ON(PageReserved(kpte_page));
if (page_private(kpte_page) == 0) {
save_page(kpte_page);
[PATCH] x86: __pa and __pa_symbol address space separation Currently __pa_symbol is for use with symbols in the kernel address map and __pa is for use with pointers into the physical memory map. But the code is implemented so you can usually interchange the two. __pa which is much more common can be implemented much more cheaply if it is it doesn't have to worry about any other kernel address spaces. This is especially true with a relocatable kernel as __pa_symbol needs to peform an extra variable read to resolve the address. There is a third macro that is added for the vsyscall data __pa_vsymbol for finding the physical addesses of vsyscall pages. Most of this patch is simply sorting through the references to __pa or __pa_symbol and using the proper one. A little of it is continuing to use a physical address when we have it instead of recalculating it several times. swapper_pgd is now NULL. leave_mm now uses init_mm.pgd and init_mm.pgd is initialized at boot (instead of compile time) to the physmem virtual mapping of init_level4_pgd. The physical address changed. Except for the for EMPTY_ZERO page all of the remaining references to __pa_symbol appear to be during kernel initialization. So this should reduce the cost of __pa in the common case, even on a relocated kernel. As this is technically a semantic change we need to be on the lookout for anything I missed. But it works for me (tm). Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-03 00:27:07 +07:00
revert_page(address, pfn, ref_prot);
}
return 0;
}
/*
* Change the page attributes of an page in the linear mapping.
*
* This should be used when a page is mapped with a different caching policy
* than write-back somewhere - some CPUs do not like it when mappings with
* different caching policies exist. This changes the page attributes of the
* in kernel linear mapping too.
*
* The caller needs to ensure that there are no conflicting mappings elsewhere.
* This function only deals with the kernel linear map.
*
* Caller must call global_flush_tlb() after this.
*/
int change_page_attr_addr(unsigned long address, int numpages, pgprot_t prot)
{
[PATCH] x86: __pa and __pa_symbol address space separation Currently __pa_symbol is for use with symbols in the kernel address map and __pa is for use with pointers into the physical memory map. But the code is implemented so you can usually interchange the two. __pa which is much more common can be implemented much more cheaply if it is it doesn't have to worry about any other kernel address spaces. This is especially true with a relocatable kernel as __pa_symbol needs to peform an extra variable read to resolve the address. There is a third macro that is added for the vsyscall data __pa_vsymbol for finding the physical addesses of vsyscall pages. Most of this patch is simply sorting through the references to __pa or __pa_symbol and using the proper one. A little of it is continuing to use a physical address when we have it instead of recalculating it several times. swapper_pgd is now NULL. leave_mm now uses init_mm.pgd and init_mm.pgd is initialized at boot (instead of compile time) to the physmem virtual mapping of init_level4_pgd. The physical address changed. Except for the for EMPTY_ZERO page all of the remaining references to __pa_symbol appear to be during kernel initialization. So this should reduce the cost of __pa in the common case, even on a relocated kernel. As this is technically a semantic change we need to be on the lookout for anything I missed. But it works for me (tm). Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-03 00:27:07 +07:00
unsigned long phys_base_pfn = __pa_symbol(__START_KERNEL_map) >> PAGE_SHIFT;
int err = 0, kernel_map = 0;
int i;
if (address >= __START_KERNEL_map
&& address < __START_KERNEL_map + KERNEL_TEXT_SIZE) {
address = (unsigned long)__va(__pa(address));
kernel_map = 1;
}
down_write(&init_mm.mmap_sem);
for (i = 0; i < numpages; i++, address += PAGE_SIZE) {
unsigned long pfn = __pa(address) >> PAGE_SHIFT;
if (!kernel_map || pte_present(pfn_pte(0, prot))) {
err = __change_page_attr(address, pfn, prot, PAGE_KERNEL);
if (err)
break;
}
/* Handle kernel mapping too which aliases part of the
* lowmem */
[PATCH] x86: __pa and __pa_symbol address space separation Currently __pa_symbol is for use with symbols in the kernel address map and __pa is for use with pointers into the physical memory map. But the code is implemented so you can usually interchange the two. __pa which is much more common can be implemented much more cheaply if it is it doesn't have to worry about any other kernel address spaces. This is especially true with a relocatable kernel as __pa_symbol needs to peform an extra variable read to resolve the address. There is a third macro that is added for the vsyscall data __pa_vsymbol for finding the physical addesses of vsyscall pages. Most of this patch is simply sorting through the references to __pa or __pa_symbol and using the proper one. A little of it is continuing to use a physical address when we have it instead of recalculating it several times. swapper_pgd is now NULL. leave_mm now uses init_mm.pgd and init_mm.pgd is initialized at boot (instead of compile time) to the physmem virtual mapping of init_level4_pgd. The physical address changed. Except for the for EMPTY_ZERO page all of the remaining references to __pa_symbol appear to be during kernel initialization. So this should reduce the cost of __pa in the common case, even on a relocated kernel. As this is technically a semantic change we need to be on the lookout for anything I missed. But it works for me (tm). Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-03 00:27:07 +07:00
if ((pfn >= phys_base_pfn) &&
((pfn - phys_base_pfn) < (KERNEL_TEXT_SIZE >> PAGE_SHIFT))) {
unsigned long addr2;
pgprot_t prot2;
[PATCH] x86: __pa and __pa_symbol address space separation Currently __pa_symbol is for use with symbols in the kernel address map and __pa is for use with pointers into the physical memory map. But the code is implemented so you can usually interchange the two. __pa which is much more common can be implemented much more cheaply if it is it doesn't have to worry about any other kernel address spaces. This is especially true with a relocatable kernel as __pa_symbol needs to peform an extra variable read to resolve the address. There is a third macro that is added for the vsyscall data __pa_vsymbol for finding the physical addesses of vsyscall pages. Most of this patch is simply sorting through the references to __pa or __pa_symbol and using the proper one. A little of it is continuing to use a physical address when we have it instead of recalculating it several times. swapper_pgd is now NULL. leave_mm now uses init_mm.pgd and init_mm.pgd is initialized at boot (instead of compile time) to the physmem virtual mapping of init_level4_pgd. The physical address changed. Except for the for EMPTY_ZERO page all of the remaining references to __pa_symbol appear to be during kernel initialization. So this should reduce the cost of __pa in the common case, even on a relocated kernel. As this is technically a semantic change we need to be on the lookout for anything I missed. But it works for me (tm). Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-03 00:27:07 +07:00
addr2 = __START_KERNEL_map + ((pfn - phys_base_pfn) << PAGE_SHIFT);
/* Make sure the kernel mappings stay executable */
prot2 = pte_pgprot(pte_mkexec(pfn_pte(0, prot)));
err = __change_page_attr(addr2, pfn, prot2,
PAGE_KERNEL_EXEC);
}
}
up_write(&init_mm.mmap_sem);
return err;
}
/* Don't call this for MMIO areas that may not have a mem_map entry */
int change_page_attr(struct page *page, int numpages, pgprot_t prot)
{
unsigned long addr = (unsigned long)page_address(page);
return change_page_attr_addr(addr, numpages, prot);
}
void global_flush_tlb(void)
{
struct page *pg, *next;
struct list_head l;
down_read(&init_mm.mmap_sem);
list_replace_init(&deferred_pages, &l);
up_read(&init_mm.mmap_sem);
flush_map(&l);
list_for_each_entry_safe(pg, next, &l, lru) {
ClearPagePrivate(pg);
__free_page(pg);
}
}
EXPORT_SYMBOL(change_page_attr);
EXPORT_SYMBOL(global_flush_tlb);