linux_dsm_epyc7002/drivers/net/sunqe.c

1016 lines
25 KiB
C
Raw Normal View History

/* sunqe.c: Sparc QuadEthernet 10baseT SBUS card driver.
* Once again I am out to prove that every ethernet
* controller out there can be most efficiently programmed
* if you make it look like a LANCE.
*
* Copyright (C) 1996, 1999, 2003, 2006 David S. Miller (davem@davemloft.net)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/crc32.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/byteorder.h>
#include <asm/idprom.h>
#include <asm/sbus.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/auxio.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include "sunqe.h"
#define DRV_NAME "sunqe"
#define DRV_VERSION "4.0"
#define DRV_RELDATE "June 23, 2006"
#define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
static char version[] =
DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION("Sun QuadEthernet 10baseT SBUS card driver");
MODULE_LICENSE("GPL");
static struct sunqec *root_qec_dev;
static void qe_set_multicast(struct net_device *dev);
#define QEC_RESET_TRIES 200
static inline int qec_global_reset(void __iomem *gregs)
{
int tries = QEC_RESET_TRIES;
sbus_writel(GLOB_CTRL_RESET, gregs + GLOB_CTRL);
while (--tries) {
u32 tmp = sbus_readl(gregs + GLOB_CTRL);
if (tmp & GLOB_CTRL_RESET) {
udelay(20);
continue;
}
break;
}
if (tries)
return 0;
printk(KERN_ERR "QuadEther: AIEEE cannot reset the QEC!\n");
return -1;
}
#define MACE_RESET_RETRIES 200
#define QE_RESET_RETRIES 200
static inline int qe_stop(struct sunqe *qep)
{
void __iomem *cregs = qep->qcregs;
void __iomem *mregs = qep->mregs;
int tries;
/* Reset the MACE, then the QEC channel. */
sbus_writeb(MREGS_BCONFIG_RESET, mregs + MREGS_BCONFIG);
tries = MACE_RESET_RETRIES;
while (--tries) {
u8 tmp = sbus_readb(mregs + MREGS_BCONFIG);
if (tmp & MREGS_BCONFIG_RESET) {
udelay(20);
continue;
}
break;
}
if (!tries) {
printk(KERN_ERR "QuadEther: AIEEE cannot reset the MACE!\n");
return -1;
}
sbus_writel(CREG_CTRL_RESET, cregs + CREG_CTRL);
tries = QE_RESET_RETRIES;
while (--tries) {
u32 tmp = sbus_readl(cregs + CREG_CTRL);
if (tmp & CREG_CTRL_RESET) {
udelay(20);
continue;
}
break;
}
if (!tries) {
printk(KERN_ERR "QuadEther: Cannot reset QE channel!\n");
return -1;
}
return 0;
}
static void qe_init_rings(struct sunqe *qep)
{
struct qe_init_block *qb = qep->qe_block;
struct sunqe_buffers *qbufs = qep->buffers;
__u32 qbufs_dvma = qep->buffers_dvma;
int i;
qep->rx_new = qep->rx_old = qep->tx_new = qep->tx_old = 0;
memset(qb, 0, sizeof(struct qe_init_block));
memset(qbufs, 0, sizeof(struct sunqe_buffers));
for (i = 0; i < RX_RING_SIZE; i++) {
qb->qe_rxd[i].rx_addr = qbufs_dvma + qebuf_offset(rx_buf, i);
qb->qe_rxd[i].rx_flags =
(RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
}
}
static int qe_init(struct sunqe *qep, int from_irq)
{
struct sunqec *qecp = qep->parent;
void __iomem *cregs = qep->qcregs;
void __iomem *mregs = qep->mregs;
void __iomem *gregs = qecp->gregs;
unsigned char *e = &qep->dev->dev_addr[0];
u32 tmp;
int i;
/* Shut it up. */
if (qe_stop(qep))
return -EAGAIN;
/* Setup initial rx/tx init block pointers. */
sbus_writel(qep->qblock_dvma + qib_offset(qe_rxd, 0), cregs + CREG_RXDS);
sbus_writel(qep->qblock_dvma + qib_offset(qe_txd, 0), cregs + CREG_TXDS);
/* Enable/mask the various irq's. */
sbus_writel(0, cregs + CREG_RIMASK);
sbus_writel(1, cregs + CREG_TIMASK);
sbus_writel(0, cregs + CREG_QMASK);
sbus_writel(CREG_MMASK_RXCOLL, cregs + CREG_MMASK);
/* Setup the FIFO pointers into QEC local memory. */
tmp = qep->channel * sbus_readl(gregs + GLOB_MSIZE);
sbus_writel(tmp, cregs + CREG_RXRBUFPTR);
sbus_writel(tmp, cregs + CREG_RXWBUFPTR);
tmp = sbus_readl(cregs + CREG_RXRBUFPTR) +
sbus_readl(gregs + GLOB_RSIZE);
sbus_writel(tmp, cregs + CREG_TXRBUFPTR);
sbus_writel(tmp, cregs + CREG_TXWBUFPTR);
/* Clear the channel collision counter. */
sbus_writel(0, cregs + CREG_CCNT);
/* For 10baseT, inter frame space nor throttle seems to be necessary. */
sbus_writel(0, cregs + CREG_PIPG);
/* Now dork with the AMD MACE. */
sbus_writeb(MREGS_PHYCONFIG_AUTO, mregs + MREGS_PHYCONFIG);
sbus_writeb(MREGS_TXFCNTL_AUTOPAD, mregs + MREGS_TXFCNTL);
sbus_writeb(0, mregs + MREGS_RXFCNTL);
/* The QEC dma's the rx'd packets from local memory out to main memory,
* and therefore it interrupts when the packet reception is "complete".
* So don't listen for the MACE talking about it.
*/
sbus_writeb(MREGS_IMASK_COLL | MREGS_IMASK_RXIRQ, mregs + MREGS_IMASK);
sbus_writeb(MREGS_BCONFIG_BSWAP | MREGS_BCONFIG_64TS, mregs + MREGS_BCONFIG);
sbus_writeb((MREGS_FCONFIG_TXF16 | MREGS_FCONFIG_RXF32 |
MREGS_FCONFIG_RFWU | MREGS_FCONFIG_TFWU),
mregs + MREGS_FCONFIG);
/* Only usable interface on QuadEther is twisted pair. */
sbus_writeb(MREGS_PLSCONFIG_TP, mregs + MREGS_PLSCONFIG);
/* Tell MACE we are changing the ether address. */
sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_PARESET,
mregs + MREGS_IACONFIG);
while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
barrier();
sbus_writeb(e[0], mregs + MREGS_ETHADDR);
sbus_writeb(e[1], mregs + MREGS_ETHADDR);
sbus_writeb(e[2], mregs + MREGS_ETHADDR);
sbus_writeb(e[3], mregs + MREGS_ETHADDR);
sbus_writeb(e[4], mregs + MREGS_ETHADDR);
sbus_writeb(e[5], mregs + MREGS_ETHADDR);
/* Clear out the address filter. */
sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
mregs + MREGS_IACONFIG);
while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
barrier();
for (i = 0; i < 8; i++)
sbus_writeb(0, mregs + MREGS_FILTER);
/* Address changes are now complete. */
sbus_writeb(0, mregs + MREGS_IACONFIG);
qe_init_rings(qep);
/* Wait a little bit for the link to come up... */
mdelay(5);
if (!(sbus_readb(mregs + MREGS_PHYCONFIG) & MREGS_PHYCONFIG_LTESTDIS)) {
int tries = 50;
while (tries--) {
u8 tmp;
mdelay(5);
barrier();
tmp = sbus_readb(mregs + MREGS_PHYCONFIG);
if ((tmp & MREGS_PHYCONFIG_LSTAT) != 0)
break;
}
if (tries == 0)
printk(KERN_NOTICE "%s: Warning, link state is down.\n", qep->dev->name);
}
/* Missed packet counter is cleared on a read. */
sbus_readb(mregs + MREGS_MPCNT);
/* Reload multicast information, this will enable the receiver
* and transmitter.
*/
qe_set_multicast(qep->dev);
/* QEC should now start to show interrupts. */
return 0;
}
/* Grrr, certain error conditions completely lock up the AMD MACE,
* so when we get these we _must_ reset the chip.
*/
static int qe_is_bolixed(struct sunqe *qep, u32 qe_status)
{
struct net_device *dev = qep->dev;
int mace_hwbug_workaround = 0;
if (qe_status & CREG_STAT_EDEFER) {
printk(KERN_ERR "%s: Excessive transmit defers.\n", dev->name);
dev->stats.tx_errors++;
}
if (qe_status & CREG_STAT_CLOSS) {
printk(KERN_ERR "%s: Carrier lost, link down?\n", dev->name);
dev->stats.tx_errors++;
dev->stats.tx_carrier_errors++;
}
if (qe_status & CREG_STAT_ERETRIES) {
printk(KERN_ERR "%s: Excessive transmit retries (more than 16).\n", dev->name);
dev->stats.tx_errors++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_LCOLL) {
printk(KERN_ERR "%s: Late transmit collision.\n", dev->name);
dev->stats.tx_errors++;
dev->stats.collisions++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_FUFLOW) {
printk(KERN_ERR "%s: Transmit fifo underflow, driver bug.\n", dev->name);
dev->stats.tx_errors++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_JERROR) {
printk(KERN_ERR "%s: Jabber error.\n", dev->name);
}
if (qe_status & CREG_STAT_BERROR) {
printk(KERN_ERR "%s: Babble error.\n", dev->name);
}
if (qe_status & CREG_STAT_CCOFLOW) {
dev->stats.tx_errors += 256;
dev->stats.collisions += 256;
}
if (qe_status & CREG_STAT_TXDERROR) {
printk(KERN_ERR "%s: Transmit descriptor is bogus, driver bug.\n", dev->name);
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_TXLERR) {
printk(KERN_ERR "%s: Transmit late error.\n", dev->name);
dev->stats.tx_errors++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_TXPERR) {
printk(KERN_ERR "%s: Transmit DMA parity error.\n", dev->name);
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_TXSERR) {
printk(KERN_ERR "%s: Transmit DMA sbus error ack.\n", dev->name);
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_RCCOFLOW) {
dev->stats.rx_errors += 256;
dev->stats.collisions += 256;
}
if (qe_status & CREG_STAT_RUOFLOW) {
dev->stats.rx_errors += 256;
dev->stats.rx_over_errors += 256;
}
if (qe_status & CREG_STAT_MCOFLOW) {
dev->stats.rx_errors += 256;
dev->stats.rx_missed_errors += 256;
}
if (qe_status & CREG_STAT_RXFOFLOW) {
printk(KERN_ERR "%s: Receive fifo overflow.\n", dev->name);
dev->stats.rx_errors++;
dev->stats.rx_over_errors++;
}
if (qe_status & CREG_STAT_RLCOLL) {
printk(KERN_ERR "%s: Late receive collision.\n", dev->name);
dev->stats.rx_errors++;
dev->stats.collisions++;
}
if (qe_status & CREG_STAT_FCOFLOW) {
dev->stats.rx_errors += 256;
dev->stats.rx_frame_errors += 256;
}
if (qe_status & CREG_STAT_CECOFLOW) {
dev->stats.rx_errors += 256;
dev->stats.rx_crc_errors += 256;
}
if (qe_status & CREG_STAT_RXDROP) {
printk(KERN_ERR "%s: Receive packet dropped.\n", dev->name);
dev->stats.rx_errors++;
dev->stats.rx_dropped++;
dev->stats.rx_missed_errors++;
}
if (qe_status & CREG_STAT_RXSMALL) {
printk(KERN_ERR "%s: Receive buffer too small, driver bug.\n", dev->name);
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
}
if (qe_status & CREG_STAT_RXLERR) {
printk(KERN_ERR "%s: Receive late error.\n", dev->name);
dev->stats.rx_errors++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_RXPERR) {
printk(KERN_ERR "%s: Receive DMA parity error.\n", dev->name);
dev->stats.rx_errors++;
dev->stats.rx_missed_errors++;
mace_hwbug_workaround = 1;
}
if (qe_status & CREG_STAT_RXSERR) {
printk(KERN_ERR "%s: Receive DMA sbus error ack.\n", dev->name);
dev->stats.rx_errors++;
dev->stats.rx_missed_errors++;
mace_hwbug_workaround = 1;
}
if (mace_hwbug_workaround)
qe_init(qep, 1);
return mace_hwbug_workaround;
}
/* Per-QE receive interrupt service routine. Just like on the happy meal
* we receive directly into skb's with a small packet copy water mark.
*/
static void qe_rx(struct sunqe *qep)
{
struct qe_rxd *rxbase = &qep->qe_block->qe_rxd[0];
struct net_device *dev = qep->dev;
struct qe_rxd *this;
struct sunqe_buffers *qbufs = qep->buffers;
__u32 qbufs_dvma = qep->buffers_dvma;
int elem = qep->rx_new, drops = 0;
u32 flags;
this = &rxbase[elem];
while (!((flags = this->rx_flags) & RXD_OWN)) {
struct sk_buff *skb;
unsigned char *this_qbuf =
&qbufs->rx_buf[elem & (RX_RING_SIZE - 1)][0];
__u32 this_qbuf_dvma = qbufs_dvma +
qebuf_offset(rx_buf, (elem & (RX_RING_SIZE - 1)));
struct qe_rxd *end_rxd =
&rxbase[(elem+RX_RING_SIZE)&(RX_RING_MAXSIZE-1)];
int len = (flags & RXD_LENGTH) - 4; /* QE adds ether FCS size to len */
/* Check for errors. */
if (len < ETH_ZLEN) {
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
dev->stats.rx_dropped++;
} else {
skb = dev_alloc_skb(len + 2);
if (skb == NULL) {
drops++;
dev->stats.rx_dropped++;
} else {
skb_reserve(skb, 2);
skb_put(skb, len);
skb_copy_to_linear_data(skb, (unsigned char *) this_qbuf,
len);
skb->protocol = eth_type_trans(skb, qep->dev);
netif_rx(skb);
qep->dev->last_rx = jiffies;
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
}
}
end_rxd->rx_addr = this_qbuf_dvma;
end_rxd->rx_flags = (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
elem = NEXT_RX(elem);
this = &rxbase[elem];
}
qep->rx_new = elem;
if (drops)
printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", qep->dev->name);
}
static void qe_tx_reclaim(struct sunqe *qep);
/* Interrupts for all QE's get filtered out via the QEC master controller,
* so we just run through each qe and check to see who is signaling
* and thus needs to be serviced.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 20:55:46 +07:00
static irqreturn_t qec_interrupt(int irq, void *dev_id)
{
struct sunqec *qecp = dev_id;
u32 qec_status;
int channel = 0;
/* Latch the status now. */
qec_status = sbus_readl(qecp->gregs + GLOB_STAT);
while (channel < 4) {
if (qec_status & 0xf) {
struct sunqe *qep = qecp->qes[channel];
u32 qe_status;
qe_status = sbus_readl(qep->qcregs + CREG_STAT);
if (qe_status & CREG_STAT_ERRORS) {
if (qe_is_bolixed(qep, qe_status))
goto next;
}
if (qe_status & CREG_STAT_RXIRQ)
qe_rx(qep);
if (netif_queue_stopped(qep->dev) &&
(qe_status & CREG_STAT_TXIRQ)) {
spin_lock(&qep->lock);
qe_tx_reclaim(qep);
if (TX_BUFFS_AVAIL(qep) > 0) {
/* Wake net queue and return to
* lazy tx reclaim.
*/
netif_wake_queue(qep->dev);
sbus_writel(1, qep->qcregs + CREG_TIMASK);
}
spin_unlock(&qep->lock);
}
next:
;
}
qec_status >>= 4;
channel++;
}
return IRQ_HANDLED;
}
static int qe_open(struct net_device *dev)
{
struct sunqe *qep = (struct sunqe *) dev->priv;
qep->mconfig = (MREGS_MCONFIG_TXENAB |
MREGS_MCONFIG_RXENAB |
MREGS_MCONFIG_MBAENAB);
return qe_init(qep, 0);
}
static int qe_close(struct net_device *dev)
{
struct sunqe *qep = (struct sunqe *) dev->priv;
qe_stop(qep);
return 0;
}
/* Reclaim TX'd frames from the ring. This must always run under
* the IRQ protected qep->lock.
*/
static void qe_tx_reclaim(struct sunqe *qep)
{
struct qe_txd *txbase = &qep->qe_block->qe_txd[0];
int elem = qep->tx_old;
while (elem != qep->tx_new) {
u32 flags = txbase[elem].tx_flags;
if (flags & TXD_OWN)
break;
elem = NEXT_TX(elem);
}
qep->tx_old = elem;
}
static void qe_tx_timeout(struct net_device *dev)
{
struct sunqe *qep = (struct sunqe *) dev->priv;
int tx_full;
spin_lock_irq(&qep->lock);
/* Try to reclaim, if that frees up some tx
* entries, we're fine.
*/
qe_tx_reclaim(qep);
tx_full = TX_BUFFS_AVAIL(qep) <= 0;
spin_unlock_irq(&qep->lock);
if (! tx_full)
goto out;
printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
qe_init(qep, 1);
out:
netif_wake_queue(dev);
}
/* Get a packet queued to go onto the wire. */
static int qe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct sunqe *qep = (struct sunqe *) dev->priv;
struct sunqe_buffers *qbufs = qep->buffers;
__u32 txbuf_dvma, qbufs_dvma = qep->buffers_dvma;
unsigned char *txbuf;
int len, entry;
spin_lock_irq(&qep->lock);
qe_tx_reclaim(qep);
len = skb->len;
entry = qep->tx_new;
txbuf = &qbufs->tx_buf[entry & (TX_RING_SIZE - 1)][0];
txbuf_dvma = qbufs_dvma +
qebuf_offset(tx_buf, (entry & (TX_RING_SIZE - 1)));
/* Avoid a race... */
qep->qe_block->qe_txd[entry].tx_flags = TXD_UPDATE;
skb_copy_from_linear_data(skb, txbuf, len);
qep->qe_block->qe_txd[entry].tx_addr = txbuf_dvma;
qep->qe_block->qe_txd[entry].tx_flags =
(TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH));
qep->tx_new = NEXT_TX(entry);
/* Get it going. */
dev->trans_start = jiffies;
sbus_writel(CREG_CTRL_TWAKEUP, qep->qcregs + CREG_CTRL);
dev->stats.tx_packets++;
dev->stats.tx_bytes += len;
if (TX_BUFFS_AVAIL(qep) <= 0) {
/* Halt the net queue and enable tx interrupts.
* When the tx queue empties the tx irq handler
* will wake up the queue and return us back to
* the lazy tx reclaim scheme.
*/
netif_stop_queue(dev);
sbus_writel(0, qep->qcregs + CREG_TIMASK);
}
spin_unlock_irq(&qep->lock);
dev_kfree_skb(skb);
return 0;
}
static void qe_set_multicast(struct net_device *dev)
{
struct sunqe *qep = (struct sunqe *) dev->priv;
struct dev_mc_list *dmi = dev->mc_list;
u8 new_mconfig = qep->mconfig;
char *addrs;
int i;
u32 crc;
/* Lock out others. */
netif_stop_queue(dev);
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
qep->mregs + MREGS_IACONFIG);
while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
barrier();
for (i = 0; i < 8; i++)
sbus_writeb(0xff, qep->mregs + MREGS_FILTER);
sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
} else if (dev->flags & IFF_PROMISC) {
new_mconfig |= MREGS_MCONFIG_PROMISC;
} else {
u16 hash_table[4];
u8 *hbytes = (unsigned char *) &hash_table[0];
for (i = 0; i < 4; i++)
hash_table[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
addrs = dmi->dmi_addr;
dmi = dmi->next;
if (!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc >>= 26;
hash_table[crc >> 4] |= 1 << (crc & 0xf);
}
/* Program the qe with the new filter value. */
sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
qep->mregs + MREGS_IACONFIG);
while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
barrier();
for (i = 0; i < 8; i++) {
u8 tmp = *hbytes++;
sbus_writeb(tmp, qep->mregs + MREGS_FILTER);
}
sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
}
/* Any change of the logical address filter, the physical address,
* or enabling/disabling promiscuous mode causes the MACE to disable
* the receiver. So we must re-enable them here or else the MACE
* refuses to listen to anything on the network. Sheesh, took
* me a day or two to find this bug.
*/
qep->mconfig = new_mconfig;
sbus_writeb(qep->mconfig, qep->mregs + MREGS_MCONFIG);
/* Let us get going again. */
netif_wake_queue(dev);
}
/* Ethtool support... */
static void qe_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct sunqe *qep = dev->priv;
strcpy(info->driver, "sunqe");
strcpy(info->version, "3.0");
sprintf(info->bus_info, "SBUS:%d",
qep->qe_sdev->slot);
}
static u32 qe_get_link(struct net_device *dev)
{
struct sunqe *qep = dev->priv;
void __iomem *mregs = qep->mregs;
u8 phyconfig;
spin_lock_irq(&qep->lock);
phyconfig = sbus_readb(mregs + MREGS_PHYCONFIG);
spin_unlock_irq(&qep->lock);
return (phyconfig & MREGS_PHYCONFIG_LSTAT);
}
static const struct ethtool_ops qe_ethtool_ops = {
.get_drvinfo = qe_get_drvinfo,
.get_link = qe_get_link,
};
/* This is only called once at boot time for each card probed. */
static inline void qec_init_once(struct sunqec *qecp, struct sbus_dev *qsdev)
{
u8 bsizes = qecp->qec_bursts;
if (sbus_can_burst64(qsdev) && (bsizes & DMA_BURST64)) {
sbus_writel(GLOB_CTRL_B64, qecp->gregs + GLOB_CTRL);
} else if (bsizes & DMA_BURST32) {
sbus_writel(GLOB_CTRL_B32, qecp->gregs + GLOB_CTRL);
} else {
sbus_writel(GLOB_CTRL_B16, qecp->gregs + GLOB_CTRL);
}
/* Packetsize only used in 100baseT BigMAC configurations,
* set it to zero just to be on the safe side.
*/
sbus_writel(GLOB_PSIZE_2048, qecp->gregs + GLOB_PSIZE);
/* Set the local memsize register, divided up to one piece per QE channel. */
sbus_writel((qsdev->reg_addrs[1].reg_size >> 2),
qecp->gregs + GLOB_MSIZE);
/* Divide up the local QEC memory amongst the 4 QE receiver and
* transmitter FIFOs. Basically it is (total / 2 / num_channels).
*/
sbus_writel((qsdev->reg_addrs[1].reg_size >> 2) >> 1,
qecp->gregs + GLOB_TSIZE);
sbus_writel((qsdev->reg_addrs[1].reg_size >> 2) >> 1,
qecp->gregs + GLOB_RSIZE);
}
static u8 __devinit qec_get_burst(struct device_node *dp)
{
u8 bsizes, bsizes_more;
/* Find and set the burst sizes for the QEC, since it
* does the actual dma for all 4 channels.
*/
bsizes = of_getintprop_default(dp, "burst-sizes", 0xff);
bsizes &= 0xff;
bsizes_more = of_getintprop_default(dp->parent, "burst-sizes", 0xff);
if (bsizes_more != 0xff)
bsizes &= bsizes_more;
if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 ||
(bsizes & DMA_BURST32)==0)
bsizes = (DMA_BURST32 - 1);
return bsizes;
}
static struct sunqec * __devinit get_qec(struct sbus_dev *child_sdev)
{
struct sbus_dev *qec_sdev = child_sdev->parent;
struct sunqec *qecp;
for (qecp = root_qec_dev; qecp; qecp = qecp->next_module) {
if (qecp->qec_sdev == qec_sdev)
break;
}
if (!qecp) {
qecp = kzalloc(sizeof(struct sunqec), GFP_KERNEL);
if (qecp) {
u32 ctrl;
qecp->qec_sdev = qec_sdev;
qecp->gregs = sbus_ioremap(&qec_sdev->resource[0], 0,
GLOB_REG_SIZE,
"QEC Global Registers");
if (!qecp->gregs)
goto fail;
/* Make sure the QEC is in MACE mode. */
ctrl = sbus_readl(qecp->gregs + GLOB_CTRL);
ctrl &= 0xf0000000;
if (ctrl != GLOB_CTRL_MMODE) {
printk(KERN_ERR "qec: Not in MACE mode!\n");
goto fail;
}
if (qec_global_reset(qecp->gregs))
goto fail;
qecp->qec_bursts = qec_get_burst(qec_sdev->ofdev.node);
qec_init_once(qecp, qec_sdev);
if (request_irq(qec_sdev->irqs[0], &qec_interrupt,
IRQF_SHARED, "qec", (void *) qecp)) {
printk(KERN_ERR "qec: Can't register irq.\n");
goto fail;
}
qecp->next_module = root_qec_dev;
root_qec_dev = qecp;
}
}
return qecp;
fail:
if (qecp->gregs)
sbus_iounmap(qecp->gregs, GLOB_REG_SIZE);
kfree(qecp);
return NULL;
}
static int __devinit qec_ether_init(struct sbus_dev *sdev)
{
static unsigned version_printed;
struct net_device *dev;
struct sunqe *qe;
struct sunqec *qecp;
int i, res;
if (version_printed++ == 0)
printk(KERN_INFO "%s", version);
dev = alloc_etherdev(sizeof(struct sunqe));
if (!dev)
return -ENOMEM;
memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
qe = netdev_priv(dev);
i = of_getintprop_default(sdev->ofdev.node, "channel#", -1);
if (i == -1) {
struct sbus_dev *td = sdev->parent->child;
i = 0;
while (td != sdev) {
td = td->next;
i++;
}
}
qe->channel = i;
spin_lock_init(&qe->lock);
res = -ENODEV;
qecp = get_qec(sdev);
if (!qecp)
goto fail;
qecp->qes[qe->channel] = qe;
qe->dev = dev;
qe->parent = qecp;
qe->qe_sdev = sdev;
res = -ENOMEM;
qe->qcregs = sbus_ioremap(&qe->qe_sdev->resource[0], 0,
CREG_REG_SIZE, "QEC Channel Registers");
if (!qe->qcregs) {
printk(KERN_ERR "qe: Cannot map channel registers.\n");
goto fail;
}
qe->mregs = sbus_ioremap(&qe->qe_sdev->resource[1], 0,
MREGS_REG_SIZE, "QE MACE Registers");
if (!qe->mregs) {
printk(KERN_ERR "qe: Cannot map MACE registers.\n");
goto fail;
}
qe->qe_block = sbus_alloc_consistent(qe->qe_sdev,
PAGE_SIZE,
&qe->qblock_dvma);
qe->buffers = sbus_alloc_consistent(qe->qe_sdev,
sizeof(struct sunqe_buffers),
&qe->buffers_dvma);
if (qe->qe_block == NULL || qe->qblock_dvma == 0 ||
qe->buffers == NULL || qe->buffers_dvma == 0)
goto fail;
/* Stop this QE. */
qe_stop(qe);
SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
dev->open = qe_open;
dev->stop = qe_close;
dev->hard_start_xmit = qe_start_xmit;
dev->set_multicast_list = qe_set_multicast;
dev->tx_timeout = qe_tx_timeout;
dev->watchdog_timeo = 5*HZ;
dev->irq = sdev->irqs[0];
dev->dma = 0;
dev->ethtool_ops = &qe_ethtool_ops;
res = register_netdev(dev);
if (res)
goto fail;
dev_set_drvdata(&sdev->ofdev.dev, qe);
printk(KERN_INFO "%s: qe channel[%d] ", dev->name, qe->channel);
for (i = 0; i < 6; i++)
printk ("%2.2x%c",
dev->dev_addr[i],
i == 5 ? ' ': ':');
printk("\n");
return 0;
fail:
if (qe->qcregs)
sbus_iounmap(qe->qcregs, CREG_REG_SIZE);
if (qe->mregs)
sbus_iounmap(qe->mregs, MREGS_REG_SIZE);
if (qe->qe_block)
sbus_free_consistent(qe->qe_sdev,
PAGE_SIZE,
qe->qe_block,
qe->qblock_dvma);
if (qe->buffers)
sbus_free_consistent(qe->qe_sdev,
sizeof(struct sunqe_buffers),
qe->buffers,
qe->buffers_dvma);
free_netdev(dev);
return res;
}
static int __devinit qec_sbus_probe(struct of_device *dev, const struct of_device_id *match)
{
struct sbus_dev *sdev = to_sbus_device(&dev->dev);
return qec_ether_init(sdev);
}
static int __devexit qec_sbus_remove(struct of_device *dev)
{
struct sunqe *qp = dev_get_drvdata(&dev->dev);
struct net_device *net_dev = qp->dev;
unregister_netdev(net_dev);
sbus_iounmap(qp->qcregs, CREG_REG_SIZE);
sbus_iounmap(qp->mregs, MREGS_REG_SIZE);
sbus_free_consistent(qp->qe_sdev,
PAGE_SIZE,
qp->qe_block,
qp->qblock_dvma);
sbus_free_consistent(qp->qe_sdev,
sizeof(struct sunqe_buffers),
qp->buffers,
qp->buffers_dvma);
free_netdev(net_dev);
dev_set_drvdata(&dev->dev, NULL);
return 0;
}
static struct of_device_id qec_sbus_match[] = {
{
.name = "qe",
},
{},
};
MODULE_DEVICE_TABLE(of, qec_sbus_match);
static struct of_platform_driver qec_sbus_driver = {
.name = "qec",
.match_table = qec_sbus_match,
.probe = qec_sbus_probe,
.remove = __devexit_p(qec_sbus_remove),
};
static int __init qec_init(void)
{
return of_register_driver(&qec_sbus_driver, &sbus_bus_type);
}
static void __exit qec_exit(void)
{
of_unregister_driver(&qec_sbus_driver);
while (root_qec_dev) {
struct sunqec *next = root_qec_dev->next_module;
free_irq(root_qec_dev->qec_sdev->irqs[0],
(void *) root_qec_dev);
sbus_iounmap(root_qec_dev->gregs, GLOB_REG_SIZE);
kfree(root_qec_dev);
root_qec_dev = next;
}
}
module_init(qec_init);
module_exit(qec_exit);