linux_dsm_epyc7002/arch/blackfin/mm/blackfin_sram.c

541 lines
12 KiB
C
Raw Normal View History

blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 04:50:22 +07:00
/*
* File: arch/blackfin/mm/blackfin_sram.c
* Based on:
* Author:
*
* Created:
* Description: SRAM driver for Blackfin ADSP-BF5xx
*
* Modified:
* Copyright 2004-2006 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/autoconf.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/rtc.h>
#include <asm/blackfin.h>
#include "blackfin_sram.h"
spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
#if CONFIG_L1_MAX_PIECE < 16
#undef CONFIG_L1_MAX_PIECE
#define CONFIG_L1_MAX_PIECE 16
#endif
#if CONFIG_L1_MAX_PIECE > 1024
#undef CONFIG_L1_MAX_PIECE
#define CONFIG_L1_MAX_PIECE 1024
#endif
#define SRAM_SLT_NULL 0
#define SRAM_SLT_FREE 1
#define SRAM_SLT_ALLOCATED 2
/* the data structure for L1 scratchpad and DATA SRAM */
struct l1_sram_piece {
void *paddr;
int size;
int flag;
};
static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE];
#if L1_DATA_A_LENGTH != 0
static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE];
#endif
#if L1_DATA_B_LENGTH != 0
static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE];
#endif
#if L1_CODE_LENGTH != 0
static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE];
#endif
/* L1 Scratchpad SRAM initialization function */
void l1sram_init(void)
{
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
L1_SCRATCH_LENGTH >> 10);
memset(&l1_ssram, 0x00, sizeof(l1_ssram));
l1_ssram[0].paddr = (void*)L1_SCRATCH_START;
l1_ssram[0].size = L1_SCRATCH_LENGTH;
l1_ssram[0].flag = SRAM_SLT_FREE;
/* mutex initialize */
spin_lock_init(&l1sram_lock);
}
void l1_data_sram_init(void)
{
#if L1_DATA_A_LENGTH != 0
printk(KERN_INFO "Blackfin DATA_A SRAM: %d KB\n",
L1_DATA_A_LENGTH >> 10);
memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram));
l1_data_A_sram[0].paddr = (void*)L1_DATA_A_START +
(_ebss_l1 - _sdata_l1);
l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
l1_data_A_sram[0].flag = SRAM_SLT_FREE;
#endif
#if L1_DATA_B_LENGTH != 0
printk(KERN_INFO "Blackfin DATA_B SRAM: %d KB\n",
L1_DATA_B_LENGTH >> 10);
memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram));
l1_data_B_sram[0].paddr = (void*)L1_DATA_B_START;
l1_data_B_sram[0].size = L1_DATA_B_LENGTH;
l1_data_B_sram[0].flag = SRAM_SLT_FREE;
#endif
/* mutex initialize */
spin_lock_init(&l1_data_sram_lock);
}
void l1_inst_sram_init(void)
{
#if L1_CODE_LENGTH != 0
printk(KERN_INFO "Blackfin Instruction SRAM: %d KB\n",
L1_CODE_LENGTH >> 10);
memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram));
l1_inst_sram[0].paddr = (void*)L1_CODE_START + (_etext_l1 - _stext_l1);
l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
l1_inst_sram[0].flag = SRAM_SLT_FREE;
#endif
/* mutex initialize */
spin_lock_init(&l1_inst_sram_lock);
}
/* L1 memory allocate function */
static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count)
{
int i, index = 0;
void *addr = NULL;
if (size <= 0)
return NULL;
/* Align the size */
size = (size + 3) & ~3;
/* not use the good method to match the best slot !!! */
/* search an available memeory slot */
for (i = 0; i < count; i++) {
if ((pfree[i].flag == SRAM_SLT_FREE)
&& (pfree[i].size >= size)) {
addr = pfree[i].paddr;
pfree[i].flag = SRAM_SLT_ALLOCATED;
index = i;
break;
}
}
if (i >= count)
return NULL;
/* updated the NULL memeory slot !!! */
if (pfree[i].size > size) {
for (i = 0; i < count; i++) {
if (pfree[i].flag == SRAM_SLT_NULL) {
pfree[i].flag = SRAM_SLT_FREE;
pfree[i].paddr = addr + size;
pfree[i].size = pfree[index].size - size;
pfree[index].size = size;
break;
}
}
}
return addr;
}
/* Allocate the largest available block. */
static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count,
unsigned long *psize)
{
unsigned long best = 0;
int i, index = -1;
void *addr = NULL;
/* search an available memeory slot */
for (i = 0; i < count; i++) {
if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) {
addr = pfree[i].paddr;
index = i;
best = pfree[i].size;
}
}
if (index < 0)
return NULL;
*psize = best;
pfree[index].flag = SRAM_SLT_ALLOCATED;
return addr;
}
/* L1 memory free function */
static int _l1_sram_free(const void *addr,
struct l1_sram_piece *pfree, int count)
{
int i, index = 0;
/* search the relevant memory slot */
for (i = 0; i < count; i++) {
if (pfree[i].paddr == addr) {
if (pfree[i].flag != SRAM_SLT_ALLOCATED) {
/* error log */
return -1;
}
index = i;
break;
}
}
if (i >= count)
return -1;
pfree[index].flag = SRAM_SLT_FREE;
/* link the next address slot */
for (i = 0; i < count; i++) {
if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr)
&& (pfree[i].flag == SRAM_SLT_FREE)) {
pfree[i].flag = SRAM_SLT_NULL;
pfree[index].size += pfree[i].size;
pfree[index].flag = SRAM_SLT_FREE;
break;
}
}
/* link the last address slot */
for (i = 0; i < count; i++) {
if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) &&
(pfree[i].flag == SRAM_SLT_FREE)) {
pfree[index].flag = SRAM_SLT_NULL;
pfree[i].size += pfree[index].size;
break;
}
}
return 0;
}
int sram_free(const void *addr)
{
if (0) {}
#if L1_CODE_LENGTH != 0
else if (addr >= (void *)L1_CODE_START
&& addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
return l1_inst_sram_free(addr);
#endif
#if L1_DATA_A_LENGTH != 0
else if (addr >= (void *)L1_DATA_A_START
&& addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
return l1_data_A_sram_free(addr);
#endif
#if L1_DATA_B_LENGTH != 0
else if (addr >= (void *)L1_DATA_B_START
&& addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
return l1_data_B_sram_free(addr);
#endif
else
return -1;
}
EXPORT_SYMBOL(sram_free);
void *l1_data_A_sram_alloc(size_t size)
{
unsigned flags;
void *addr = NULL;
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
#if L1_DATA_A_LENGTH != 0
addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
#endif
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
}
EXPORT_SYMBOL(l1_data_A_sram_alloc);
int l1_data_A_sram_free(const void *addr)
{
unsigned flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
#if L1_DATA_A_LENGTH != 0
ret = _l1_sram_free(addr,
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
#else
ret = -1;
#endif
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
return ret;
}
EXPORT_SYMBOL(l1_data_A_sram_free);
void *l1_data_B_sram_alloc(size_t size)
{
#if L1_DATA_B_LENGTH != 0
unsigned flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
#else
return NULL;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_alloc);
int l1_data_B_sram_free(const void *addr)
{
#if L1_DATA_B_LENGTH != 0
unsigned flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
return ret;
#else
return -1;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_free);
void *l1_data_sram_alloc(size_t size)
{
void *addr = l1_data_A_sram_alloc(size);
if (!addr)
addr = l1_data_B_sram_alloc(size);
return addr;
}
EXPORT_SYMBOL(l1_data_sram_alloc);
void *l1_data_sram_zalloc(size_t size)
{
void *addr = l1_data_sram_alloc(size);
if (addr)
memset(addr, 0x00, size);
return addr;
}
EXPORT_SYMBOL(l1_data_sram_zalloc);
int l1_data_sram_free(const void *addr)
{
int ret;
ret = l1_data_A_sram_free(addr);
if (ret == -1)
ret = l1_data_B_sram_free(addr);
return ret;
}
EXPORT_SYMBOL(l1_data_sram_free);
void *l1_inst_sram_alloc(size_t size)
{
#if L1_DATA_A_LENGTH != 0
unsigned flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l1_inst_sram_lock, flags);
addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
/* add mutex operation */
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
(long unsigned int)addr, size);
return addr;
#else
return NULL;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_alloc);
int l1_inst_sram_free(const void *addr)
{
#if L1_CODE_LENGTH != 0
unsigned flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l1_inst_sram_lock, flags);
ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
/* add mutex operation */
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
return ret;
#else
return -1;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_free);
/* L1 Scratchpad memory allocate function */
void *l1sram_alloc(size_t size)
{
unsigned flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram));
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
return addr;
}
/* L1 Scratchpad memory allocate function */
void *l1sram_alloc_max(size_t *psize)
{
unsigned flags;
void *addr;
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize);
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
return addr;
}
/* L1 Scratchpad memory free function */
int l1sram_free(const void *addr)
{
unsigned flags;
int ret;
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram));
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
return ret;
}
int sram_free_with_lsl(const void *addr)
{
struct sram_list_struct *lsl, **tmp;
struct mm_struct *mm = current->mm;
for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
if ((*tmp)->addr == addr)
goto found;
return -1;
found:
lsl = *tmp;
sram_free(addr);
*tmp = lsl->next;
kfree(lsl);
return 0;
}
EXPORT_SYMBOL(sram_free_with_lsl);
void *sram_alloc_with_lsl(size_t size, unsigned long flags)
{
void *addr = NULL;
struct sram_list_struct *lsl = NULL;
struct mm_struct *mm = current->mm;
lsl = kmalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
if (!lsl)
return NULL;
memset(lsl, 0, sizeof(*lsl));
if (flags & L1_INST_SRAM)
addr = l1_inst_sram_alloc(size);
if (addr == NULL && (flags & L1_DATA_A_SRAM))
addr = l1_data_A_sram_alloc(size);
if (addr == NULL && (flags & L1_DATA_B_SRAM))
addr = l1_data_B_sram_alloc(size);
if (addr == NULL) {
kfree(lsl);
return NULL;
}
lsl->addr = addr;
lsl->length = size;
lsl->next = mm->context.sram_list;
mm->context.sram_list = lsl;
return addr;
}
EXPORT_SYMBOL(sram_alloc_with_lsl);