linux_dsm_epyc7002/arch/sh/include/asm/processor.h

185 lines
4.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __ASM_SH_PROCESSOR_H
#define __ASM_SH_PROCESSOR_H
#include <asm/cpu-features.h>
#include <asm/segment.h>
#include <asm/cache.h>
#ifndef __ASSEMBLY__
/*
* CPU type and hardware bug flags. Kept separately for each CPU.
*
* Each one of these also needs a CONFIG_CPU_SUBTYPE_xxx entry
* in arch/sh/mm/Kconfig, as well as an entry in arch/sh/kernel/setup.c
* for parsing the subtype in get_cpu_subtype().
*/
enum cpu_type {
/* SH-2 types */
CPU_SH7619, CPU_J2,
/* SH-2A types */
CPU_SH7201, CPU_SH7203, CPU_SH7206, CPU_SH7263, CPU_SH7264, CPU_SH7269,
CPU_MXG,
/* SH-3 types */
CPU_SH7705, CPU_SH7706, CPU_SH7707,
CPU_SH7708, CPU_SH7708S, CPU_SH7708R,
CPU_SH7709, CPU_SH7709A, CPU_SH7710, CPU_SH7712,
CPU_SH7720, CPU_SH7721, CPU_SH7729,
/* SH-4 types */
CPU_SH7750, CPU_SH7750S, CPU_SH7750R, CPU_SH7751, CPU_SH7751R,
CPU_SH7760, CPU_SH4_202, CPU_SH4_501,
/* SH-4A types */
CPU_SH7763, CPU_SH7770, CPU_SH7780, CPU_SH7781, CPU_SH7785, CPU_SH7786,
CPU_SH7723, CPU_SH7724, CPU_SH7757, CPU_SH7734, CPU_SHX3,
/* SH4AL-DSP types */
CPU_SH7343, CPU_SH7722, CPU_SH7366, CPU_SH7372,
/* SH-5 types */
CPU_SH5_101, CPU_SH5_103,
/* Unknown subtype */
CPU_SH_NONE
};
enum cpu_family {
CPU_FAMILY_SH2,
CPU_FAMILY_SH2A,
CPU_FAMILY_SH3,
CPU_FAMILY_SH4,
CPU_FAMILY_SH4A,
CPU_FAMILY_SH4AL_DSP,
CPU_FAMILY_SH5,
CPU_FAMILY_UNKNOWN,
};
/*
* TLB information structure
*
* Defined for both I and D tlb, per-processor.
*/
struct tlb_info {
unsigned long long next;
unsigned long long first;
unsigned long long last;
unsigned int entries;
unsigned int step;
unsigned long flags;
};
struct sh_cpuinfo {
unsigned int type, family;
int cut_major, cut_minor;
unsigned long loops_per_jiffy;
unsigned long asid_cache;
struct cache_info icache; /* Primary I-cache */
struct cache_info dcache; /* Primary D-cache */
struct cache_info scache; /* Secondary cache */
/* TLB info */
struct tlb_info itlb;
struct tlb_info dtlb;
unsigned int phys_bits;
unsigned long flags;
} __attribute__ ((aligned(L1_CACHE_BYTES)));
extern struct sh_cpuinfo cpu_data[];
#define boot_cpu_data cpu_data[0]
#define current_cpu_data cpu_data[smp_processor_id()]
#define raw_current_cpu_data cpu_data[raw_smp_processor_id()]
#define cpu_sleep() __asm__ __volatile__ ("sleep" : : : "memory")
#define cpu_relax() barrier()
void default_idle(void);
void stop_this_cpu(void *);
/* Forward decl */
struct seq_operations;
struct task_struct;
extern struct pt_regs fake_swapper_regs;
extern void cpu_init(void);
extern void cpu_probe(void);
/* arch/sh/kernel/process.c */
extern unsigned int xstate_size;
extern void free_thread_xstate(struct task_struct *);
extern struct kmem_cache *task_xstate_cachep;
/* arch/sh/mm/alignment.c */
extern int get_unalign_ctl(struct task_struct *, unsigned long addr);
extern int set_unalign_ctl(struct task_struct *, unsigned int val);
#define GET_UNALIGN_CTL(tsk, addr) get_unalign_ctl((tsk), (addr))
#define SET_UNALIGN_CTL(tsk, val) set_unalign_ctl((tsk), (val))
/* arch/sh/mm/init.c */
extern unsigned int mem_init_done;
/* arch/sh/kernel/setup.c */
const char *get_cpu_subtype(struct sh_cpuinfo *c);
extern const struct seq_operations cpuinfo_op;
/* thread_struct flags */
#define SH_THREAD_UAC_NOPRINT (1 << 0)
#define SH_THREAD_UAC_SIGBUS (1 << 1)
#define SH_THREAD_UAC_MASK (SH_THREAD_UAC_NOPRINT | SH_THREAD_UAC_SIGBUS)
/* processor boot mode configuration */
#define MODE_PIN0 (1 << 0)
#define MODE_PIN1 (1 << 1)
#define MODE_PIN2 (1 << 2)
#define MODE_PIN3 (1 << 3)
#define MODE_PIN4 (1 << 4)
#define MODE_PIN5 (1 << 5)
#define MODE_PIN6 (1 << 6)
#define MODE_PIN7 (1 << 7)
#define MODE_PIN8 (1 << 8)
#define MODE_PIN9 (1 << 9)
#define MODE_PIN10 (1 << 10)
#define MODE_PIN11 (1 << 11)
#define MODE_PIN12 (1 << 12)
#define MODE_PIN13 (1 << 13)
#define MODE_PIN14 (1 << 14)
#define MODE_PIN15 (1 << 15)
int generic_mode_pins(void);
int test_mode_pin(int pin);
#ifdef CONFIG_VSYSCALL
int vsyscall_init(void);
#else
#define vsyscall_init() do { } while (0)
#endif
/*
* SH-2A has both 16 and 32-bit opcodes, do lame encoding checks.
*/
#ifdef CONFIG_CPU_SH2A
extern unsigned int instruction_size(unsigned int insn);
#elif defined(CONFIG_SUPERH32)
#define instruction_size(insn) (2)
#else
#define instruction_size(insn) (4)
#endif
#endif /* __ASSEMBLY__ */
#ifdef CONFIG_SUPERH32
# include <asm/processor_32.h>
#else
# include <asm/processor_64.h>
#endif
#endif /* __ASM_SH_PROCESSOR_H */