linux_dsm_epyc7002/sound/soc/codecs/sta350.c

1280 lines
37 KiB
C
Raw Normal View History

/*
* Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
*
* Copyright: 2014 Raumfeld GmbH
* Author: Sven Brandau <info@brandau.biz>
*
* based on code from:
* Raumfeld GmbH
* Johannes Stezenbach <js@sig21.net>
* Wolfson Microelectronics PLC.
* Mark Brown <broonie@opensource.wolfsonmicro.com>
* Freescale Semiconductor, Inc.
* Timur Tabi <timur@freescale.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/sta350.h>
#include "sta350.h"
#define STA350_RATES (SNDRV_PCM_RATE_32000 | \
SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000 | \
SNDRV_PCM_RATE_88200 | \
SNDRV_PCM_RATE_96000 | \
SNDRV_PCM_RATE_176400 | \
SNDRV_PCM_RATE_192000)
#define STA350_FORMATS \
(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
/* Power-up register defaults */
static const struct reg_default sta350_regs[] = {
{ 0x0, 0x63 },
{ 0x1, 0x80 },
{ 0x2, 0xdf },
{ 0x3, 0x40 },
{ 0x4, 0xc2 },
{ 0x5, 0x5c },
{ 0x6, 0x00 },
{ 0x7, 0xff },
{ 0x8, 0x60 },
{ 0x9, 0x60 },
{ 0xa, 0x60 },
{ 0xb, 0x00 },
{ 0xc, 0x00 },
{ 0xd, 0x00 },
{ 0xe, 0x00 },
{ 0xf, 0x40 },
{ 0x10, 0x80 },
{ 0x11, 0x77 },
{ 0x12, 0x6a },
{ 0x13, 0x69 },
{ 0x14, 0x6a },
{ 0x15, 0x69 },
{ 0x16, 0x00 },
{ 0x17, 0x00 },
{ 0x18, 0x00 },
{ 0x19, 0x00 },
{ 0x1a, 0x00 },
{ 0x1b, 0x00 },
{ 0x1c, 0x00 },
{ 0x1d, 0x00 },
{ 0x1e, 0x00 },
{ 0x1f, 0x00 },
{ 0x20, 0x00 },
{ 0x21, 0x00 },
{ 0x22, 0x00 },
{ 0x23, 0x00 },
{ 0x24, 0x00 },
{ 0x25, 0x00 },
{ 0x26, 0x00 },
{ 0x27, 0x2a },
{ 0x28, 0xc0 },
{ 0x29, 0xf3 },
{ 0x2a, 0x33 },
{ 0x2b, 0x00 },
{ 0x2c, 0x0c },
{ 0x31, 0x00 },
{ 0x36, 0x00 },
{ 0x37, 0x00 },
{ 0x38, 0x00 },
{ 0x39, 0x01 },
{ 0x3a, 0xee },
{ 0x3b, 0xff },
{ 0x3c, 0x7e },
{ 0x3d, 0xc0 },
{ 0x3e, 0x26 },
{ 0x3f, 0x00 },
{ 0x48, 0x00 },
{ 0x49, 0x00 },
{ 0x4a, 0x00 },
{ 0x4b, 0x04 },
{ 0x4c, 0x00 },
};
static const struct regmap_range sta350_write_regs_range[] = {
regmap_reg_range(STA350_CONFA, STA350_AUTO2),
regmap_reg_range(STA350_C1CFG, STA350_FDRC2),
regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
};
static const struct regmap_range sta350_read_regs_range[] = {
regmap_reg_range(STA350_CONFA, STA350_AUTO2),
regmap_reg_range(STA350_C1CFG, STA350_STATUS),
regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
};
static const struct regmap_range sta350_volatile_regs_range[] = {
regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
regmap_reg_range(STA350_STATUS, STA350_STATUS),
};
static const struct regmap_access_table sta350_write_regs = {
.yes_ranges = sta350_write_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
};
static const struct regmap_access_table sta350_read_regs = {
.yes_ranges = sta350_read_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
};
static const struct regmap_access_table sta350_volatile_regs = {
.yes_ranges = sta350_volatile_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
};
/* regulator power supply names */
static const char * const sta350_supply_names[] = {
"vdd-dig", /* digital supply, 3.3V */
"vdd-pll", /* pll supply, 3.3V */
"vcc" /* power amp supply, 5V - 26V */
};
/* codec private data */
struct sta350_priv {
struct regmap *regmap;
struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
struct sta350_platform_data *pdata;
unsigned int mclk;
unsigned int format;
u32 coef_shadow[STA350_COEF_COUNT];
int shutdown;
struct gpio_desc *gpiod_nreset;
struct gpio_desc *gpiod_power_down;
struct mutex coeff_lock;
};
static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
static const char * const sta350_drc_ac[] = {
"Anti-Clipping", "Dynamic Range Compression"
};
static const char * const sta350_auto_gc_mode[] = {
"User", "AC no clipping", "AC limited clipping (10%)",
"DRC nighttime listening mode"
};
static const char * const sta350_auto_xo_mode[] = {
"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
"340Hz", "360Hz"
};
static const char * const sta350_binary_output[] = {
"FFX 3-state output - normal operation", "Binary output"
};
static const char * const sta350_limiter_select[] = {
"Limiter Disabled", "Limiter #1", "Limiter #2"
};
static const char * const sta350_limiter_attack_rate[] = {
"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
"0.0645", "0.0564", "0.0501", "0.0451"
};
static const char * const sta350_limiter_release_rate[] = {
"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
"0.0134", "0.0117", "0.0110", "0.0104"
};
static const char * const sta350_noise_shaper_type[] = {
"Third order", "Fourth order"
};
static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
);
static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
);
static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
);
static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
);
static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
STA350_CONFD, STA350_CONFD_DRC_SHIFT,
sta350_drc_ac);
static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
sta350_noise_shaper_type);
static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
sta350_auto_gc_mode);
static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
sta350_auto_xo_mode);
static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
sta350_binary_output);
static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
sta350_binary_output);
static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
sta350_binary_output);
static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
sta350_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
sta350_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
sta350_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
STA350_L1AR, STA350_LxA_SHIFT,
sta350_limiter_attack_rate);
static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
STA350_L2AR, STA350_LxA_SHIFT,
sta350_limiter_attack_rate);
static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
STA350_L1AR, STA350_LxR_SHIFT,
sta350_limiter_release_rate);
static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
STA350_L2AR, STA350_LxR_SHIFT,
sta350_limiter_release_rate);
/*
* byte array controls for setting biquad, mixer, scaling coefficients;
* for biquads all five coefficients need to be set in one go,
* mixer and pre/postscale coefs can be set individually;
* each coef is 24bit, the bytes are ordered in the same way
* as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
*/
static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int numcoef = kcontrol->private_value >> 16;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = 3 * numcoef;
return 0;
}
static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
int numcoef = kcontrol->private_value >> 16;
int index = kcontrol->private_value & 0xffff;
unsigned int cfud, val;
int i, ret = 0;
mutex_lock(&sta350->coeff_lock);
/* preserve reserved bits in STA350_CFUD */
regmap_read(sta350->regmap, STA350_CFUD, &cfud);
cfud &= 0xf0;
/*
* chip documentation does not say if the bits are self clearing,
* so do it explicitly
*/
regmap_write(sta350->regmap, STA350_CFUD, cfud);
regmap_write(sta350->regmap, STA350_CFADDR2, index);
if (numcoef == 1) {
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
} else if (numcoef == 5) {
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
} else {
ret = -EINVAL;
goto exit_unlock;
}
for (i = 0; i < 3 * numcoef; i++) {
regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
ucontrol->value.bytes.data[i] = val;
}
exit_unlock:
mutex_unlock(&sta350->coeff_lock);
return ret;
}
static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
int numcoef = kcontrol->private_value >> 16;
int index = kcontrol->private_value & 0xffff;
unsigned int cfud;
int i;
/* preserve reserved bits in STA350_CFUD */
regmap_read(sta350->regmap, STA350_CFUD, &cfud);
cfud &= 0xf0;
/*
* chip documentation does not say if the bits are self clearing,
* so do it explicitly
*/
regmap_write(sta350->regmap, STA350_CFUD, cfud);
regmap_write(sta350->regmap, STA350_CFADDR2, index);
for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
sta350->coef_shadow[index + i] =
(ucontrol->value.bytes.data[3 * i] << 16)
| (ucontrol->value.bytes.data[3 * i + 1] << 8)
| (ucontrol->value.bytes.data[3 * i + 2]);
for (i = 0; i < 3 * numcoef; i++)
regmap_write(sta350->regmap, STA350_B1CF1 + i,
ucontrol->value.bytes.data[i]);
if (numcoef == 1)
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
else if (numcoef == 5)
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
else
return -EINVAL;
return 0;
}
static int sta350_sync_coef_shadow(struct snd_soc_component *component)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
unsigned int cfud;
int i;
/* preserve reserved bits in STA350_CFUD */
regmap_read(sta350->regmap, STA350_CFUD, &cfud);
cfud &= 0xf0;
for (i = 0; i < STA350_COEF_COUNT; i++) {
regmap_write(sta350->regmap, STA350_CFADDR2, i);
regmap_write(sta350->regmap, STA350_B1CF1,
(sta350->coef_shadow[i] >> 16) & 0xff);
regmap_write(sta350->regmap, STA350_B1CF2,
(sta350->coef_shadow[i] >> 8) & 0xff);
regmap_write(sta350->regmap, STA350_B1CF3,
(sta350->coef_shadow[i]) & 0xff);
/*
* chip documentation does not say if the bits are
* self-clearing, so do it explicitly
*/
regmap_write(sta350->regmap, STA350_CFUD, cfud);
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
}
return 0;
}
static int sta350_cache_sync(struct snd_soc_component *component)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
unsigned int mute;
int rc;
/* mute during register sync */
regmap_read(sta350->regmap, STA350_CFUD, &mute);
regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
sta350_sync_coef_shadow(component);
rc = regcache_sync(sta350->regmap);
regmap_write(sta350->regmap, STA350_MMUTE, mute);
return rc;
}
#define SINGLE_COEF(xname, index) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = sta350_coefficient_info, \
.get = sta350_coefficient_get,\
.put = sta350_coefficient_put, \
.private_value = index | (1 << 16) }
#define BIQUAD_COEFS(xname, index) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = sta350_coefficient_info, \
.get = sta350_coefficient_get,\
.put = sta350_coefficient_put, \
.private_value = index | (5 << 16) }
static const struct snd_kcontrol_new sta350_snd_controls[] = {
SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
/* VOL */
SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
/* CONFD */
SOC_SINGLE("High Pass Filter Bypass Switch",
STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
SOC_SINGLE("De-emphasis Filter Switch",
STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
SOC_SINGLE("DSP Bypass Switch",
STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
SOC_SINGLE("Post-scale Link Switch",
STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
SOC_SINGLE("Biquad Coefficient Link Switch",
STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
SOC_SINGLE("Zero-detect Mute Enable Switch",
STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
SOC_SINGLE("Submix Mode Switch",
STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
/* CONFE */
SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
/* MUTE */
SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
/* AUTOx */
SOC_ENUM("Automode GC", sta350_auto_gc_enum),
SOC_ENUM("Automode XO", sta350_auto_xo_enum),
/* CxCFG */
SOC_SINGLE("Ch1 Tone Control Bypass Switch",
STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
SOC_SINGLE("Ch2 Tone Control Bypass Switch",
STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
SOC_SINGLE("Ch1 EQ Bypass Switch",
STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
SOC_SINGLE("Ch2 EQ Bypass Switch",
STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
SOC_SINGLE("Ch1 Master Volume Bypass Switch",
STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
SOC_SINGLE("Ch2 Master Volume Bypass Switch",
STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
SOC_SINGLE("Ch3 Master Volume Bypass Switch",
STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
/* TONE */
SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
/*
* depending on mode, the attack/release thresholds have
* two different enum definitions; provide both
*/
SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
STA350_L1ATRT, STA350_LxA_SHIFT,
16, 0, sta350_limiter_ac_attack_tlv),
SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
STA350_L2ATRT, STA350_LxA_SHIFT,
16, 0, sta350_limiter_ac_attack_tlv),
SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
STA350_L1ATRT, STA350_LxR_SHIFT,
16, 0, sta350_limiter_ac_release_tlv),
SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
STA350_L2ATRT, STA350_LxR_SHIFT,
16, 0, sta350_limiter_ac_release_tlv),
SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
STA350_L1ATRT, STA350_LxA_SHIFT,
16, 0, sta350_limiter_drc_attack_tlv),
SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
STA350_L2ATRT, STA350_LxA_SHIFT,
16, 0, sta350_limiter_drc_attack_tlv),
SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
STA350_L1ATRT, STA350_LxR_SHIFT,
16, 0, sta350_limiter_drc_release_tlv),
SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
STA350_L2ATRT, STA350_LxR_SHIFT,
16, 0, sta350_limiter_drc_release_tlv),
BIQUAD_COEFS("Ch1 - Biquad 1", 0),
BIQUAD_COEFS("Ch1 - Biquad 2", 5),
BIQUAD_COEFS("Ch1 - Biquad 3", 10),
BIQUAD_COEFS("Ch1 - Biquad 4", 15),
BIQUAD_COEFS("Ch2 - Biquad 1", 20),
BIQUAD_COEFS("Ch2 - Biquad 2", 25),
BIQUAD_COEFS("Ch2 - Biquad 3", 30),
BIQUAD_COEFS("Ch2 - Biquad 4", 35),
BIQUAD_COEFS("High-pass", 40),
BIQUAD_COEFS("Low-pass", 45),
SINGLE_COEF("Ch1 - Prescale", 50),
SINGLE_COEF("Ch2 - Prescale", 51),
SINGLE_COEF("Ch1 - Postscale", 52),
SINGLE_COEF("Ch2 - Postscale", 53),
SINGLE_COEF("Ch3 - Postscale", 54),
SINGLE_COEF("Thermal warning - Postscale", 55),
SINGLE_COEF("Ch1 - Mix 1", 56),
SINGLE_COEF("Ch1 - Mix 2", 57),
SINGLE_COEF("Ch2 - Mix 1", 58),
SINGLE_COEF("Ch2 - Mix 2", 59),
SINGLE_COEF("Ch3 - Mix 1", 60),
SINGLE_COEF("Ch3 - Mix 2", 61),
};
static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_OUTPUT("LEFT"),
SND_SOC_DAPM_OUTPUT("RIGHT"),
SND_SOC_DAPM_OUTPUT("SUB"),
};
static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
{ "LEFT", NULL, "DAC" },
{ "RIGHT", NULL, "DAC" },
{ "SUB", NULL, "DAC" },
{ "DAC", NULL, "Playback" },
};
/* MCLK interpolation ratio per fs */
static struct {
int fs;
int ir;
} interpolation_ratios[] = {
{ 32000, 0 },
{ 44100, 0 },
{ 48000, 0 },
{ 88200, 1 },
{ 96000, 1 },
{ 176400, 2 },
{ 192000, 2 },
};
/* MCLK to fs clock ratios */
static int mcs_ratio_table[3][6] = {
{ 768, 512, 384, 256, 128, 576 },
{ 384, 256, 192, 128, 64, 0 },
{ 192, 128, 96, 64, 32, 0 },
};
/**
* sta350_set_dai_sysclk - configure MCLK
* @codec_dai: the codec DAI
* @clk_id: the clock ID (ignored)
* @freq: the MCLK input frequency
* @dir: the clock direction (ignored)
*
* The value of MCLK is used to determine which sample rates are supported
* by the STA350, based on the mcs_ratio_table.
*
* This function must be called by the machine driver's 'startup' function,
* otherwise the list of supported sample rates will not be available in
* time for ALSA.
*/
static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = codec_dai->component;
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
dev_dbg(component->dev, "mclk=%u\n", freq);
sta350->mclk = freq;
return 0;
}
/**
* sta350_set_dai_fmt - configure the codec for the selected audio format
* @codec_dai: the codec DAI
* @fmt: a SND_SOC_DAIFMT_x value indicating the data format
*
* This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
* codec accordingly.
*/
static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
unsigned int confb = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_RIGHT_J:
case SND_SOC_DAIFMT_LEFT_J:
sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
confb |= STA350_CONFB_C2IM;
break;
case SND_SOC_DAIFMT_NB_IF:
confb |= STA350_CONFB_C1IM;
break;
default:
return -EINVAL;
}
return regmap_update_bits(sta350->regmap, STA350_CONFB,
STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
}
/**
* sta350_hw_params - program the STA350 with the given hardware parameters.
* @substream: the audio stream
* @params: the hardware parameters to set
* @dai: the SOC DAI (ignored)
*
* This function programs the hardware with the values provided.
* Specifically, the sample rate and the data format.
*/
static int sta350_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
int i, mcs = -EINVAL, ir = -EINVAL;
unsigned int confa, confb;
unsigned int rate, ratio;
int ret;
if (!sta350->mclk) {
dev_err(component->dev,
"sta350->mclk is unset. Unable to determine ratio\n");
return -EIO;
}
rate = params_rate(params);
ratio = sta350->mclk / rate;
dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
if (interpolation_ratios[i].fs == rate) {
ir = interpolation_ratios[i].ir;
break;
}
}
if (ir < 0) {
dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
return -EINVAL;
}
for (i = 0; i < 6; i++) {
if (mcs_ratio_table[ir][i] == ratio) {
mcs = i;
break;
}
}
if (mcs < 0) {
dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
return -EINVAL;
}
confa = (ir << STA350_CONFA_IR_SHIFT) |
(mcs << STA350_CONFA_MCS_SHIFT);
confb = 0;
switch (params_width(params)) {
case 24:
dev_dbg(component->dev, "24bit\n");
/* fall through */
case 32:
dev_dbg(component->dev, "24bit or 32bit\n");
switch (sta350->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x0;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x1;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0x2;
break;
}
break;
case 20:
dev_dbg(component->dev, "20bit\n");
switch (sta350->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x4;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x5;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0x6;
break;
}
break;
case 18:
dev_dbg(component->dev, "18bit\n");
switch (sta350->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x8;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x9;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0xa;
break;
}
break;
case 16:
dev_dbg(component->dev, "16bit\n");
switch (sta350->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x0;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0xd;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0xe;
break;
}
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
confa);
if (ret < 0)
return ret;
ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
confb);
if (ret < 0)
return ret;
return 0;
}
static int sta350_startup_sequence(struct sta350_priv *sta350)
{
if (sta350->gpiod_power_down)
gpiod_set_value(sta350->gpiod_power_down, 1);
if (sta350->gpiod_nreset) {
gpiod_set_value(sta350->gpiod_nreset, 0);
mdelay(1);
gpiod_set_value(sta350->gpiod_nreset, 1);
mdelay(1);
}
return 0;
}
/**
* sta350_set_bias_level - DAPM callback
* @component: the component device
* @level: DAPM power level
*
* This is called by ALSA to put the component into low power mode
* or to wake it up. If the component is powered off completely
* all registers must be restored after power on.
*/
static int sta350_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
int ret;
dev_dbg(component->dev, "level = %d\n", level);
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
/* Full power on */
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_PWDN | STA350_CONFF_EAPD,
STA350_CONFF_PWDN | STA350_CONFF_EAPD);
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
ret = regulator_bulk_enable(
ARRAY_SIZE(sta350->supplies),
sta350->supplies);
if (ret < 0) {
dev_err(component->dev,
"Failed to enable supplies: %d\n",
ret);
return ret;
}
sta350_startup_sequence(sta350);
sta350_cache_sync(component);
}
/* Power down */
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_PWDN | STA350_CONFF_EAPD,
0);
break;
case SND_SOC_BIAS_OFF:
/* The chip runs through the power down sequence for us */
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
/* power down: low */
if (sta350->gpiod_power_down)
gpiod_set_value(sta350->gpiod_power_down, 0);
if (sta350->gpiod_nreset)
gpiod_set_value(sta350->gpiod_nreset, 0);
regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
sta350->supplies);
break;
}
return 0;
}
static const struct snd_soc_dai_ops sta350_dai_ops = {
.hw_params = sta350_hw_params,
.set_sysclk = sta350_set_dai_sysclk,
.set_fmt = sta350_set_dai_fmt,
};
static struct snd_soc_dai_driver sta350_dai = {
.name = "sta350-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = STA350_RATES,
.formats = STA350_FORMATS,
},
.ops = &sta350_dai_ops,
};
static int sta350_probe(struct snd_soc_component *component)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
struct sta350_platform_data *pdata = sta350->pdata;
int i, ret = 0, thermal = 0;
ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
sta350->supplies);
if (ret < 0) {
dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
return ret;
}
ret = sta350_startup_sequence(sta350);
if (ret < 0) {
dev_err(component->dev, "Failed to startup device\n");
return ret;
}
/* CONFA */
if (!pdata->thermal_warning_recovery)
thermal |= STA350_CONFA_TWAB;
if (!pdata->thermal_warning_adjustment)
thermal |= STA350_CONFA_TWRB;
if (!pdata->fault_detect_recovery)
thermal |= STA350_CONFA_FDRB;
regmap_update_bits(sta350->regmap, STA350_CONFA,
STA350_CONFA_TWAB | STA350_CONFA_TWRB |
STA350_CONFA_FDRB,
thermal);
/* CONFC */
regmap_update_bits(sta350->regmap, STA350_CONFC,
STA350_CONFC_OM_MASK,
pdata->ffx_power_output_mode
<< STA350_CONFC_OM_SHIFT);
regmap_update_bits(sta350->regmap, STA350_CONFC,
STA350_CONFC_CSZ_MASK,
pdata->drop_compensation_ns
<< STA350_CONFC_CSZ_SHIFT);
regmap_update_bits(sta350->regmap,
STA350_CONFC,
STA350_CONFC_OCRB,
pdata->oc_warning_adjustment ?
STA350_CONFC_OCRB : 0);
/* CONFE */
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_MPCV,
pdata->max_power_use_mpcc ?
STA350_CONFE_MPCV : 0);
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_MPC,
pdata->max_power_correction ?
STA350_CONFE_MPC : 0);
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_AME,
pdata->am_reduction_mode ?
STA350_CONFE_AME : 0);
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_PWMS,
pdata->odd_pwm_speed_mode ?
STA350_CONFE_PWMS : 0);
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_DCCV,
pdata->distortion_compensation ?
STA350_CONFE_DCCV : 0);
/* CONFF */
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_IDE,
pdata->invalid_input_detect_mute ?
STA350_CONFF_IDE : 0);
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_OCFG_MASK,
pdata->output_conf
<< STA350_CONFF_OCFG_SHIFT);
/* channel to output mapping */
regmap_update_bits(sta350->regmap, STA350_C1CFG,
STA350_CxCFG_OM_MASK,
pdata->ch1_output_mapping
<< STA350_CxCFG_OM_SHIFT);
regmap_update_bits(sta350->regmap, STA350_C2CFG,
STA350_CxCFG_OM_MASK,
pdata->ch2_output_mapping
<< STA350_CxCFG_OM_SHIFT);
regmap_update_bits(sta350->regmap, STA350_C3CFG,
STA350_CxCFG_OM_MASK,
pdata->ch3_output_mapping
<< STA350_CxCFG_OM_SHIFT);
/* miscellaneous registers */
regmap_update_bits(sta350->regmap, STA350_MISC1,
STA350_MISC1_CPWMEN,
pdata->activate_mute_output ?
STA350_MISC1_CPWMEN : 0);
regmap_update_bits(sta350->regmap, STA350_MISC1,
STA350_MISC1_BRIDGOFF,
pdata->bridge_immediate_off ?
STA350_MISC1_BRIDGOFF : 0);
regmap_update_bits(sta350->regmap, STA350_MISC1,
STA350_MISC1_NSHHPEN,
pdata->noise_shape_dc_cut ?
STA350_MISC1_NSHHPEN : 0);
regmap_update_bits(sta350->regmap, STA350_MISC1,
STA350_MISC1_RPDNEN,
pdata->powerdown_master_vol ?
STA350_MISC1_RPDNEN: 0);
regmap_update_bits(sta350->regmap, STA350_MISC2,
STA350_MISC2_PNDLSL_MASK,
pdata->powerdown_delay_divider
<< STA350_MISC2_PNDLSL_SHIFT);
/* initialize coefficient shadow RAM with reset values */
for (i = 4; i <= 49; i += 5)
sta350->coef_shadow[i] = 0x400000;
for (i = 50; i <= 54; i++)
sta350->coef_shadow[i] = 0x7fffff;
sta350->coef_shadow[55] = 0x5a9df7;
sta350->coef_shadow[56] = 0x7fffff;
sta350->coef_shadow[59] = 0x7fffff;
sta350->coef_shadow[60] = 0x400000;
sta350->coef_shadow[61] = 0x400000;
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
/* Bias level configuration will have done an extra enable */
regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
return 0;
}
static void sta350_remove(struct snd_soc_component *component)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
}
static const struct snd_soc_component_driver sta350_component = {
.probe = sta350_probe,
.remove = sta350_remove,
.set_bias_level = sta350_set_bias_level,
.controls = sta350_snd_controls,
.num_controls = ARRAY_SIZE(sta350_snd_controls),
.dapm_widgets = sta350_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets),
.dapm_routes = sta350_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct regmap_config sta350_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = STA350_MISC2,
.reg_defaults = sta350_regs,
.num_reg_defaults = ARRAY_SIZE(sta350_regs),
.cache_type = REGCACHE_RBTREE,
.wr_table = &sta350_write_regs,
.rd_table = &sta350_read_regs,
.volatile_table = &sta350_volatile_regs,
};
#ifdef CONFIG_OF
static const struct of_device_id st350_dt_ids[] = {
{ .compatible = "st,sta350", },
{ }
};
MODULE_DEVICE_TABLE(of, st350_dt_ids);
static const char * const sta350_ffx_modes[] = {
[STA350_FFX_PM_DROP_COMP] = "drop-compensation",
[STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation",
[STA350_FFX_PM_FULL_POWER] = "full-power-mode",
[STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation",
};
static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
{
struct device_node *np = dev->of_node;
struct sta350_platform_data *pdata;
const char *ffx_power_mode;
u16 tmp;
u8 tmp8;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
of_property_read_u8(np, "st,output-conf",
&pdata->output_conf);
of_property_read_u8(np, "st,ch1-output-mapping",
&pdata->ch1_output_mapping);
of_property_read_u8(np, "st,ch2-output-mapping",
&pdata->ch2_output_mapping);
of_property_read_u8(np, "st,ch3-output-mapping",
&pdata->ch3_output_mapping);
if (of_get_property(np, "st,thermal-warning-recovery", NULL))
pdata->thermal_warning_recovery = 1;
if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
pdata->thermal_warning_adjustment = 1;
if (of_get_property(np, "st,fault-detect-recovery", NULL))
pdata->fault_detect_recovery = 1;
pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
if (!of_property_read_string(np, "st,ffx-power-output-mode",
&ffx_power_mode)) {
int i, mode = -EINVAL;
for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
mode = i;
if (mode < 0)
dev_warn(dev, "Unsupported ffx output mode: %s\n",
ffx_power_mode);
else
pdata->ffx_power_output_mode = mode;
}
tmp = 140;
of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
pdata->oc_warning_adjustment = 1;
/* CONFE */
if (of_get_property(np, "st,max-power-use-mpcc", NULL))
pdata->max_power_use_mpcc = 1;
if (of_get_property(np, "st,max-power-correction", NULL))
pdata->max_power_correction = 1;
if (of_get_property(np, "st,am-reduction-mode", NULL))
pdata->am_reduction_mode = 1;
if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
pdata->odd_pwm_speed_mode = 1;
if (of_get_property(np, "st,distortion-compensation", NULL))
pdata->distortion_compensation = 1;
/* CONFF */
if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
pdata->invalid_input_detect_mute = 1;
/* MISC */
if (of_get_property(np, "st,activate-mute-output", NULL))
pdata->activate_mute_output = 1;
if (of_get_property(np, "st,bridge-immediate-off", NULL))
pdata->bridge_immediate_off = 1;
if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
pdata->noise_shape_dc_cut = 1;
if (of_get_property(np, "st,powerdown-master-volume", NULL))
pdata->powerdown_master_vol = 1;
if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
pdata->powerdown_delay_divider = ilog2(tmp8);
else
dev_warn(dev, "Unsupported powerdown delay divider %d\n",
tmp8);
}
sta350->pdata = pdata;
return 0;
}
#endif
static int sta350_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct device *dev = &i2c->dev;
struct sta350_priv *sta350;
int ret, i;
sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
if (!sta350)
return -ENOMEM;
mutex_init(&sta350->coeff_lock);
sta350->pdata = dev_get_platdata(dev);
#ifdef CONFIG_OF
if (dev->of_node) {
ret = sta350_probe_dt(dev, sta350);
if (ret < 0)
return ret;
}
#endif
/* GPIOs */
sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(sta350->gpiod_nreset))
return PTR_ERR(sta350->gpiod_nreset);
sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
GPIOD_OUT_LOW);
if (IS_ERR(sta350->gpiod_power_down))
return PTR_ERR(sta350->gpiod_power_down);
/* regulators */
for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
sta350->supplies[i].supply = sta350_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
sta350->supplies);
if (ret < 0) {
dev_err(dev, "Failed to request supplies: %d\n", ret);
return ret;
}
sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
if (IS_ERR(sta350->regmap)) {
ret = PTR_ERR(sta350->regmap);
dev_err(dev, "Failed to init regmap: %d\n", ret);
return ret;
}
i2c_set_clientdata(i2c, sta350);
ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
if (ret < 0)
dev_err(dev, "Failed to register component (%d)\n", ret);
return ret;
}
static int sta350_i2c_remove(struct i2c_client *client)
{
return 0;
}
static const struct i2c_device_id sta350_i2c_id[] = {
{ "sta350", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
static struct i2c_driver sta350_i2c_driver = {
.driver = {
.name = "sta350",
.of_match_table = of_match_ptr(st350_dt_ids),
},
.probe = sta350_i2c_probe,
.remove = sta350_i2c_remove,
.id_table = sta350_i2c_id,
};
module_i2c_driver(sta350_i2c_driver);
MODULE_DESCRIPTION("ASoC STA350 driver");
MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
MODULE_LICENSE("GPL");