linux_dsm_epyc7002/arch/x86/crypto/twofish_glue_3way.c

698 lines
17 KiB
C
Raw Normal View History

crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
/*
* Glue Code for 3-way parallel assembler optimized version of Twofish
*
* Copyright (c) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
*
* CBC & ECB parts based on code (crypto/cbc.c,ecb.c) by:
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
* CTR part based on code (crypto/ctr.c) by:
* (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*/
#include <asm/processor.h>
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
#include <linux/crypto.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <crypto/algapi.h>
#include <crypto/twofish.h>
#include <crypto/b128ops.h>
#include <crypto/lrw.h>
#include <crypto/xts.h>
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
/* regular block cipher functions from twofish_x86_64 module */
asmlinkage void twofish_enc_blk(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void twofish_dec_blk(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
/* 3-way parallel cipher functions */
asmlinkage void __twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, bool xor);
crypto: twofish - add x86_64/avx assembler implementation This patch adds a x86_64/avx assembler implementation of the Twofish block cipher. The implementation processes eight blocks in parallel (two 4 block chunk AVX operations). The table-lookups are done in general-purpose registers. For small blocksizes the 3way-parallel functions from the twofish-x86_64-3way module are called. A good performance increase is provided for blocksizes greater or equal to 128B. Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmark results: Intel Core i5-2500 CPU (fam:6, model:42, step:7) twofish-avx-x86_64 vs. twofish-x86_64-3way 128bit key: (lrw:256bit) (xts:256bit) size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec 16B 0.96x 0.97x 1.00x 0.95x 0.97x 0.97x 0.96x 0.95x 0.95x 0.98x 64B 0.99x 0.99x 1.00x 0.99x 0.98x 0.98x 0.99x 0.98x 0.99x 0.98x 256B 1.20x 1.21x 1.00x 1.19x 1.15x 1.14x 1.19x 1.20x 1.18x 1.19x 1024B 1.29x 1.30x 1.00x 1.28x 1.23x 1.24x 1.26x 1.28x 1.26x 1.27x 8192B 1.31x 1.32x 1.00x 1.31x 1.25x 1.25x 1.28x 1.29x 1.28x 1.30x 256bit key: (lrw:384bit) (xts:512bit) size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec 16B 0.96x 0.96x 1.00x 0.96x 0.97x 0.98x 0.95x 0.95x 0.95x 0.96x 64B 1.00x 0.99x 1.00x 0.98x 0.98x 1.01x 0.98x 0.98x 0.98x 0.98x 256B 1.20x 1.21x 1.00x 1.21x 1.15x 1.15x 1.19x 1.20x 1.18x 1.19x 1024B 1.29x 1.30x 1.00x 1.28x 1.23x 1.23x 1.26x 1.27x 1.26x 1.27x 8192B 1.31x 1.33x 1.00x 1.31x 1.26x 1.26x 1.29x 1.29x 1.28x 1.30x twofish-avx-x86_64 vs aes-asm (8kB block): 128bit 256bit ecb-enc 1.19x 1.63x ecb-dec 1.18x 1.62x cbc-enc 0.75x 1.03x cbc-dec 1.23x 1.67x ctr-enc 1.24x 1.65x ctr-dec 1.24x 1.65x lrw-enc 1.15x 1.53x lrw-dec 1.14x 1.52x xts-enc 1.16x 1.56x xts-dec 1.16x 1.56x Signed-off-by: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-05-28 20:54:24 +07:00
EXPORT_SYMBOL_GPL(__twofish_enc_blk_3way);
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
asmlinkage void twofish_dec_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
crypto: twofish - add x86_64/avx assembler implementation This patch adds a x86_64/avx assembler implementation of the Twofish block cipher. The implementation processes eight blocks in parallel (two 4 block chunk AVX operations). The table-lookups are done in general-purpose registers. For small blocksizes the 3way-parallel functions from the twofish-x86_64-3way module are called. A good performance increase is provided for blocksizes greater or equal to 128B. Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmark results: Intel Core i5-2500 CPU (fam:6, model:42, step:7) twofish-avx-x86_64 vs. twofish-x86_64-3way 128bit key: (lrw:256bit) (xts:256bit) size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec 16B 0.96x 0.97x 1.00x 0.95x 0.97x 0.97x 0.96x 0.95x 0.95x 0.98x 64B 0.99x 0.99x 1.00x 0.99x 0.98x 0.98x 0.99x 0.98x 0.99x 0.98x 256B 1.20x 1.21x 1.00x 1.19x 1.15x 1.14x 1.19x 1.20x 1.18x 1.19x 1024B 1.29x 1.30x 1.00x 1.28x 1.23x 1.24x 1.26x 1.28x 1.26x 1.27x 8192B 1.31x 1.32x 1.00x 1.31x 1.25x 1.25x 1.28x 1.29x 1.28x 1.30x 256bit key: (lrw:384bit) (xts:512bit) size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec 16B 0.96x 0.96x 1.00x 0.96x 0.97x 0.98x 0.95x 0.95x 0.95x 0.96x 64B 1.00x 0.99x 1.00x 0.98x 0.98x 1.01x 0.98x 0.98x 0.98x 0.98x 256B 1.20x 1.21x 1.00x 1.21x 1.15x 1.15x 1.19x 1.20x 1.18x 1.19x 1024B 1.29x 1.30x 1.00x 1.28x 1.23x 1.23x 1.26x 1.27x 1.26x 1.27x 8192B 1.31x 1.33x 1.00x 1.31x 1.26x 1.26x 1.29x 1.29x 1.28x 1.30x twofish-avx-x86_64 vs aes-asm (8kB block): 128bit 256bit ecb-enc 1.19x 1.63x ecb-dec 1.18x 1.62x cbc-enc 0.75x 1.03x cbc-dec 1.23x 1.67x ctr-enc 1.24x 1.65x ctr-dec 1.24x 1.65x lrw-enc 1.15x 1.53x lrw-dec 1.14x 1.52x xts-enc 1.16x 1.56x xts-dec 1.16x 1.56x Signed-off-by: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-05-28 20:54:24 +07:00
EXPORT_SYMBOL_GPL(twofish_dec_blk_3way);
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
static inline void twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
{
__twofish_enc_blk_3way(ctx, dst, src, false);
}
static inline void twofish_enc_blk_xor_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
{
__twofish_enc_blk_3way(ctx, dst, src, true);
}
static int ecb_crypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk,
void (*fn)(struct twofish_ctx *, u8 *, const u8 *),
void (*fn_3way)(struct twofish_ctx *, u8 *, const u8 *))
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
unsigned int bsize = TF_BLOCK_SIZE;
unsigned int nbytes;
int err;
err = blkcipher_walk_virt(desc, walk);
while ((nbytes = walk->nbytes)) {
u8 *wsrc = walk->src.virt.addr;
u8 *wdst = walk->dst.virt.addr;
/* Process three block batch */
if (nbytes >= bsize * 3) {
do {
fn_3way(ctx, wdst, wsrc);
wsrc += bsize * 3;
wdst += bsize * 3;
nbytes -= bsize * 3;
} while (nbytes >= bsize * 3);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
do {
fn(ctx, wdst, wsrc);
wsrc += bsize;
wdst += bsize;
nbytes -= bsize;
} while (nbytes >= bsize);
done:
err = blkcipher_walk_done(desc, walk, nbytes);
}
return err;
}
static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_crypt(desc, &walk, twofish_enc_blk, twofish_enc_blk_3way);
}
static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_crypt(desc, &walk, twofish_dec_blk, twofish_dec_blk_3way);
}
static unsigned int __cbc_encrypt(struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
unsigned int bsize = TF_BLOCK_SIZE;
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
u128 *iv = (u128 *)walk->iv;
do {
u128_xor(dst, src, iv);
twofish_enc_blk(ctx, (u8 *)dst, (u8 *)dst);
iv = dst;
src += 1;
dst += 1;
nbytes -= bsize;
} while (nbytes >= bsize);
u128_xor((u128 *)walk->iv, (u128 *)walk->iv, iv);
return nbytes;
}
static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
while ((nbytes = walk.nbytes)) {
nbytes = __cbc_encrypt(desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
return err;
}
static unsigned int __cbc_decrypt(struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
unsigned int bsize = TF_BLOCK_SIZE;
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
u128 ivs[3 - 1];
u128 last_iv;
/* Start of the last block. */
src += nbytes / bsize - 1;
dst += nbytes / bsize - 1;
last_iv = *src;
/* Process three block batch */
if (nbytes >= bsize * 3) {
do {
nbytes -= bsize * (3 - 1);
src -= 3 - 1;
dst -= 3 - 1;
ivs[0] = src[0];
ivs[1] = src[1];
twofish_dec_blk_3way(ctx, (u8 *)dst, (u8 *)src);
u128_xor(dst + 1, dst + 1, ivs + 0);
u128_xor(dst + 2, dst + 2, ivs + 1);
nbytes -= bsize;
if (nbytes < bsize)
goto done;
u128_xor(dst, dst, src - 1);
src -= 1;
dst -= 1;
} while (nbytes >= bsize * 3);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
for (;;) {
twofish_dec_blk(ctx, (u8 *)dst, (u8 *)src);
nbytes -= bsize;
if (nbytes < bsize)
break;
u128_xor(dst, dst, src - 1);
src -= 1;
dst -= 1;
}
done:
u128_xor(dst, dst, (u128 *)walk->iv);
*(u128 *)walk->iv = last_iv;
return nbytes;
}
static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
while ((nbytes = walk.nbytes)) {
nbytes = __cbc_decrypt(desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
return err;
}
static inline void u128_to_be128(be128 *dst, const u128 *src)
{
dst->a = cpu_to_be64(src->a);
dst->b = cpu_to_be64(src->b);
}
static inline void be128_to_u128(u128 *dst, const be128 *src)
{
dst->a = be64_to_cpu(src->a);
dst->b = be64_to_cpu(src->b);
}
static inline void u128_inc(u128 *i)
{
i->b++;
if (!i->b)
i->a++;
}
static void ctr_crypt_final(struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
u8 *ctrblk = walk->iv;
u8 keystream[TF_BLOCK_SIZE];
u8 *src = walk->src.virt.addr;
u8 *dst = walk->dst.virt.addr;
unsigned int nbytes = walk->nbytes;
twofish_enc_blk(ctx, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_inc(ctrblk, TF_BLOCK_SIZE);
}
static unsigned int __ctr_crypt(struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
unsigned int bsize = TF_BLOCK_SIZE;
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
u128 ctrblk;
be128 ctrblocks[3];
be128_to_u128(&ctrblk, (be128 *)walk->iv);
/* Process three block batch */
if (nbytes >= bsize * 3) {
do {
if (dst != src) {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
/* create ctrblks for parallel encrypt */
u128_to_be128(&ctrblocks[0], &ctrblk);
u128_inc(&ctrblk);
u128_to_be128(&ctrblocks[1], &ctrblk);
u128_inc(&ctrblk);
u128_to_be128(&ctrblocks[2], &ctrblk);
u128_inc(&ctrblk);
twofish_enc_blk_xor_3way(ctx, (u8 *)dst,
(u8 *)ctrblocks);
src += 3;
dst += 3;
nbytes -= bsize * 3;
} while (nbytes >= bsize * 3);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
do {
if (dst != src)
*dst = *src;
u128_to_be128(&ctrblocks[0], &ctrblk);
u128_inc(&ctrblk);
twofish_enc_blk(ctx, (u8 *)ctrblocks, (u8 *)ctrblocks);
u128_xor(dst, dst, (u128 *)ctrblocks);
src += 1;
dst += 1;
nbytes -= bsize;
} while (nbytes >= bsize);
done:
u128_to_be128((be128 *)walk->iv, &ctrblk);
return nbytes;
}
static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt_block(desc, &walk, TF_BLOCK_SIZE);
while ((nbytes = walk.nbytes) >= TF_BLOCK_SIZE) {
nbytes = __ctr_crypt(desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
if (walk.nbytes) {
ctr_crypt_final(desc, &walk);
err = blkcipher_walk_done(desc, &walk, 0);
}
return err;
}
static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
{
const unsigned int bsize = TF_BLOCK_SIZE;
struct twofish_ctx *ctx = priv;
int i;
if (nbytes == 3 * bsize) {
twofish_enc_blk_3way(ctx, srcdst, srcdst);
return;
}
for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
twofish_enc_blk(ctx, srcdst, srcdst);
}
static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
{
const unsigned int bsize = TF_BLOCK_SIZE;
struct twofish_ctx *ctx = priv;
int i;
if (nbytes == 3 * bsize) {
twofish_dec_blk_3way(ctx, srcdst, srcdst);
return;
}
for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
twofish_dec_blk(ctx, srcdst, srcdst);
}
struct twofish_lrw_ctx {
struct lrw_table_ctx lrw_table;
struct twofish_ctx twofish_ctx;
};
static int lrw_twofish_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct twofish_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
int err;
err = __twofish_setkey(&ctx->twofish_ctx, key, keylen - TF_BLOCK_SIZE,
&tfm->crt_flags);
if (err)
return err;
return lrw_init_table(&ctx->lrw_table, key + keylen - TF_BLOCK_SIZE);
}
static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[3];
struct lrw_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.table_ctx = &ctx->lrw_table,
.crypt_ctx = &ctx->twofish_ctx,
.crypt_fn = encrypt_callback,
};
return lrw_crypt(desc, dst, src, nbytes, &req);
}
static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[3];
struct lrw_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.table_ctx = &ctx->lrw_table,
.crypt_ctx = &ctx->twofish_ctx,
.crypt_fn = decrypt_callback,
};
return lrw_crypt(desc, dst, src, nbytes, &req);
}
static void lrw_exit_tfm(struct crypto_tfm *tfm)
{
struct twofish_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
lrw_free_table(&ctx->lrw_table);
}
struct twofish_xts_ctx {
struct twofish_ctx tweak_ctx;
struct twofish_ctx crypt_ctx;
};
static int xts_twofish_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct twofish_xts_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
int err;
/* key consists of keys of equal size concatenated, therefore
* the length must be even
*/
if (keylen % 2) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
/* first half of xts-key is for crypt */
err = __twofish_setkey(&ctx->crypt_ctx, key, keylen / 2, flags);
if (err)
return err;
/* second half of xts-key is for tweak */
return __twofish_setkey(&ctx->tweak_ctx, key + keylen / 2, keylen / 2,
flags);
}
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[3];
struct xts_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.tweak_ctx = &ctx->tweak_ctx,
.tweak_fn = XTS_TWEAK_CAST(twofish_enc_blk),
.crypt_ctx = &ctx->crypt_ctx,
.crypt_fn = encrypt_callback,
};
return xts_crypt(desc, dst, src, nbytes, &req);
}
static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[3];
struct xts_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.tweak_ctx = &ctx->tweak_ctx,
.tweak_fn = XTS_TWEAK_CAST(twofish_enc_blk),
.crypt_ctx = &ctx->crypt_ctx,
.crypt_fn = decrypt_callback,
};
return xts_crypt(desc, dst, src, nbytes, &req);
}
static struct crypto_alg tf_algs[5] = { {
.cra_name = "ecb(twofish)",
.cra_driver_name = "ecb-twofish-3way",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(tf_algs[0].cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.setkey = twofish_setkey,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
}, {
.cra_name = "cbc(twofish)",
.cra_driver_name = "cbc-twofish-3way",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(tf_algs[1].cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = twofish_setkey,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
}, {
.cra_name = "ctr(twofish)",
.cra_driver_name = "ctr-twofish-3way",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(tf_algs[2].cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = twofish_setkey,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
},
},
}, {
.cra_name = "lrw(twofish)",
.cra_driver_name = "lrw-twofish-3way",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_lrw_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(tf_algs[3].cra_list),
.cra_exit = lrw_exit_tfm,
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE + TF_BLOCK_SIZE,
.max_keysize = TF_MAX_KEY_SIZE + TF_BLOCK_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = lrw_twofish_setkey,
.encrypt = lrw_encrypt,
.decrypt = lrw_decrypt,
},
},
}, {
.cra_name = "xts(twofish)",
.cra_driver_name = "xts-twofish-3way",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_xts_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(tf_algs[4].cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE * 2,
.max_keysize = TF_MAX_KEY_SIZE * 2,
.ivsize = TF_BLOCK_SIZE,
.setkey = xts_twofish_setkey,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
},
},
} };
static bool is_blacklisted_cpu(void)
{
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return false;
if (boot_cpu_data.x86 == 0x06 &&
(boot_cpu_data.x86_model == 0x1c ||
boot_cpu_data.x86_model == 0x26 ||
boot_cpu_data.x86_model == 0x36)) {
/*
* On Atom, twofish-3way is slower than original assembler
* implementation. Twofish-3way trades off some performance in
* storing blocks in 64bit registers to allow three blocks to
* be processed parallel. Parallel operation then allows gaining
* more performance than was trade off, on out-of-order CPUs.
* However Atom does not benefit from this parallellism and
* should be blacklisted.
*/
return true;
}
if (boot_cpu_data.x86 == 0x0f) {
/*
* On Pentium 4, twofish-3way is slower than original assembler
* implementation because excessive uses of 64bit rotate and
* left-shifts (which are really slow on P4) needed to store and
* handle 128bit block in two 64bit registers.
*/
return true;
}
return false;
}
static int force;
module_param(force, int, 0);
MODULE_PARM_DESC(force, "Force module load, ignore CPU blacklist");
static int __init init(void)
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
{
if (!force && is_blacklisted_cpu()) {
printk(KERN_INFO
"twofish-x86_64-3way: performance on this CPU "
"would be suboptimal: disabling "
"twofish-x86_64-3way.\n");
return -ENODEV;
}
return crypto_register_algs(tf_algs, ARRAY_SIZE(tf_algs));
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
}
static void __exit fini(void)
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
{
crypto_unregister_algs(tf_algs, ARRAY_SIZE(tf_algs));
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 20:47:25 +07:00
}
module_init(init);
module_exit(fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Twofish Cipher Algorithm, 3-way parallel asm optimized");
MODULE_ALIAS("twofish");
MODULE_ALIAS("twofish-asm");