linux_dsm_epyc7002/drivers/mmc/host/wmt-sdmmc.c

1012 lines
24 KiB
C
Raw Normal View History

/*
* WM8505/WM8650 SD/MMC Host Controller
*
* Copyright (C) 2010 Tony Prisk
* Copyright (C) 2008 WonderMedia Technologies, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_device.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <asm/byteorder.h>
#define DRIVER_NAME "wmt-sdhc"
/* MMC/SD controller registers */
#define SDMMC_CTLR 0x00
#define SDMMC_CMD 0x01
#define SDMMC_RSPTYPE 0x02
#define SDMMC_ARG 0x04
#define SDMMC_BUSMODE 0x08
#define SDMMC_BLKLEN 0x0C
#define SDMMC_BLKCNT 0x0E
#define SDMMC_RSP 0x10
#define SDMMC_CBCR 0x20
#define SDMMC_INTMASK0 0x24
#define SDMMC_INTMASK1 0x25
#define SDMMC_STS0 0x28
#define SDMMC_STS1 0x29
#define SDMMC_STS2 0x2A
#define SDMMC_STS3 0x2B
#define SDMMC_RSPTIMEOUT 0x2C
#define SDMMC_CLK 0x30 /* VT8500 only */
#define SDMMC_EXTCTRL 0x34
#define SDMMC_SBLKLEN 0x38
#define SDMMC_DMATIMEOUT 0x3C
/* SDMMC_CTLR bit fields */
#define CTLR_CMD_START 0x01
#define CTLR_CMD_WRITE 0x04
#define CTLR_FIFO_RESET 0x08
/* SDMMC_BUSMODE bit fields */
#define BM_SPI_MODE 0x01
#define BM_FOURBIT_MODE 0x02
#define BM_EIGHTBIT_MODE 0x04
#define BM_SD_OFF 0x10
#define BM_SPI_CS 0x20
#define BM_SD_POWER 0x40
#define BM_SOFT_RESET 0x80
#define BM_ONEBIT_MASK 0xFD
/* SDMMC_BLKLEN bit fields */
#define BLKL_CRCERR_ABORT 0x0800
#define BLKL_CD_POL_HIGH 0x1000
#define BLKL_GPI_CD 0x2000
#define BLKL_DATA3_CD 0x4000
#define BLKL_INT_ENABLE 0x8000
/* SDMMC_INTMASK0 bit fields */
#define INT0_MBLK_TRAN_DONE_INT_EN 0x10
#define INT0_BLK_TRAN_DONE_INT_EN 0x20
#define INT0_CD_INT_EN 0x40
#define INT0_DI_INT_EN 0x80
/* SDMMC_INTMASK1 bit fields */
#define INT1_CMD_RES_TRAN_DONE_INT_EN 0x02
#define INT1_CMD_RES_TOUT_INT_EN 0x04
#define INT1_MBLK_AUTO_STOP_INT_EN 0x08
#define INT1_DATA_TOUT_INT_EN 0x10
#define INT1_RESCRC_ERR_INT_EN 0x20
#define INT1_RCRC_ERR_INT_EN 0x40
#define INT1_WCRC_ERR_INT_EN 0x80
/* SDMMC_STS0 bit fields */
#define STS0_WRITE_PROTECT 0x02
#define STS0_CD_DATA3 0x04
#define STS0_CD_GPI 0x08
#define STS0_MBLK_DONE 0x10
#define STS0_BLK_DONE 0x20
#define STS0_CARD_DETECT 0x40
#define STS0_DEVICE_INS 0x80
/* SDMMC_STS1 bit fields */
#define STS1_SDIO_INT 0x01
#define STS1_CMDRSP_DONE 0x02
#define STS1_RSP_TIMEOUT 0x04
#define STS1_AUTOSTOP_DONE 0x08
#define STS1_DATA_TIMEOUT 0x10
#define STS1_RSP_CRC_ERR 0x20
#define STS1_RCRC_ERR 0x40
#define STS1_WCRC_ERR 0x80
/* SDMMC_STS2 bit fields */
#define STS2_CMD_RES_BUSY 0x10
#define STS2_DATARSP_BUSY 0x20
#define STS2_DIS_FORCECLK 0x80
/* MMC/SD DMA Controller Registers */
#define SDDMA_GCR 0x100
#define SDDMA_IER 0x104
#define SDDMA_ISR 0x108
#define SDDMA_DESPR 0x10C
#define SDDMA_RBR 0x110
#define SDDMA_DAR 0x114
#define SDDMA_BAR 0x118
#define SDDMA_CPR 0x11C
#define SDDMA_CCR 0x120
/* SDDMA_GCR bit fields */
#define DMA_GCR_DMA_EN 0x00000001
#define DMA_GCR_SOFT_RESET 0x00000100
/* SDDMA_IER bit fields */
#define DMA_IER_INT_EN 0x00000001
/* SDDMA_ISR bit fields */
#define DMA_ISR_INT_STS 0x00000001
/* SDDMA_RBR bit fields */
#define DMA_RBR_FORMAT 0x40000000
#define DMA_RBR_END 0x80000000
/* SDDMA_CCR bit fields */
#define DMA_CCR_RUN 0x00000080
#define DMA_CCR_IF_TO_PERIPHERAL 0x00000000
#define DMA_CCR_PERIPHERAL_TO_IF 0x00400000
/* SDDMA_CCR event status */
#define DMA_CCR_EVT_NO_STATUS 0x00000000
#define DMA_CCR_EVT_UNDERRUN 0x00000001
#define DMA_CCR_EVT_OVERRUN 0x00000002
#define DMA_CCR_EVT_DESP_READ 0x00000003
#define DMA_CCR_EVT_DATA_RW 0x00000004
#define DMA_CCR_EVT_EARLY_END 0x00000005
#define DMA_CCR_EVT_SUCCESS 0x0000000F
#define PDMA_READ 0x00
#define PDMA_WRITE 0x01
#define WMT_SD_POWER_OFF 0
#define WMT_SD_POWER_ON 1
struct wmt_dma_descriptor {
u32 flags;
u32 data_buffer_addr;
u32 branch_addr;
u32 reserved1;
};
struct wmt_mci_caps {
unsigned int f_min;
unsigned int f_max;
u32 ocr_avail;
u32 caps;
u32 max_seg_size;
u32 max_segs;
u32 max_blk_size;
};
struct wmt_mci_priv {
struct mmc_host *mmc;
void __iomem *sdmmc_base;
int irq_regular;
int irq_dma;
void *dma_desc_buffer;
dma_addr_t dma_desc_device_addr;
struct completion cmdcomp;
struct completion datacomp;
struct completion *comp_cmd;
struct completion *comp_dma;
struct mmc_request *req;
struct mmc_command *cmd;
struct clk *clk_sdmmc;
struct device *dev;
u8 power_inverted;
u8 cd_inverted;
};
static void wmt_set_sd_power(struct wmt_mci_priv *priv, int enable)
{
u32 reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
if (enable ^ priv->power_inverted)
reg_tmp &= ~BM_SD_OFF;
else
reg_tmp |= BM_SD_OFF;
writeb(reg_tmp, priv->sdmmc_base + SDMMC_BUSMODE);
}
static void wmt_mci_read_response(struct mmc_host *mmc)
{
struct wmt_mci_priv *priv;
int idx1, idx2;
u8 tmp_resp;
u32 response;
priv = mmc_priv(mmc);
for (idx1 = 0; idx1 < 4; idx1++) {
response = 0;
for (idx2 = 0; idx2 < 4; idx2++) {
if ((idx1 == 3) && (idx2 == 3))
tmp_resp = readb(priv->sdmmc_base + SDMMC_RSP);
else
tmp_resp = readb(priv->sdmmc_base + SDMMC_RSP +
(idx1*4) + idx2 + 1);
response |= (tmp_resp << (idx2 * 8));
}
priv->cmd->resp[idx1] = cpu_to_be32(response);
}
}
static void wmt_mci_start_command(struct wmt_mci_priv *priv)
{
u32 reg_tmp;
reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR);
writeb(reg_tmp | CTLR_CMD_START, priv->sdmmc_base + SDMMC_CTLR);
}
static int wmt_mci_send_command(struct mmc_host *mmc, u8 command, u8 cmdtype,
u32 arg, u8 rsptype)
{
struct wmt_mci_priv *priv;
u32 reg_tmp;
priv = mmc_priv(mmc);
/* write command, arg, resptype registers */
writeb(command, priv->sdmmc_base + SDMMC_CMD);
writel(arg, priv->sdmmc_base + SDMMC_ARG);
writeb(rsptype, priv->sdmmc_base + SDMMC_RSPTYPE);
/* reset response FIFO */
reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR);
writeb(reg_tmp | CTLR_FIFO_RESET, priv->sdmmc_base + SDMMC_CTLR);
/* ensure clock enabled - VT3465 */
wmt_set_sd_power(priv, WMT_SD_POWER_ON);
/* clear status bits */
writeb(0xFF, priv->sdmmc_base + SDMMC_STS0);
writeb(0xFF, priv->sdmmc_base + SDMMC_STS1);
writeb(0xFF, priv->sdmmc_base + SDMMC_STS2);
writeb(0xFF, priv->sdmmc_base + SDMMC_STS3);
/* set command type */
reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR);
writeb((reg_tmp & 0x0F) | (cmdtype << 4),
priv->sdmmc_base + SDMMC_CTLR);
return 0;
}
static void wmt_mci_disable_dma(struct wmt_mci_priv *priv)
{
writel(DMA_ISR_INT_STS, priv->sdmmc_base + SDDMA_ISR);
writel(0, priv->sdmmc_base + SDDMA_IER);
}
static void wmt_complete_data_request(struct wmt_mci_priv *priv)
{
struct mmc_request *req;
req = priv->req;
req->data->bytes_xfered = req->data->blksz * req->data->blocks;
/* unmap the DMA pages used for write data */
if (req->data->flags & MMC_DATA_WRITE)
dma_unmap_sg(mmc_dev(priv->mmc), req->data->sg,
req->data->sg_len, DMA_TO_DEVICE);
else
dma_unmap_sg(mmc_dev(priv->mmc), req->data->sg,
req->data->sg_len, DMA_FROM_DEVICE);
/* Check if the DMA ISR returned a data error */
if ((req->cmd->error) || (req->data->error))
mmc_request_done(priv->mmc, req);
else {
wmt_mci_read_response(priv->mmc);
if (!req->data->stop) {
/* single-block read/write requests end here */
mmc_request_done(priv->mmc, req);
} else {
/*
* we change the priv->cmd variable so the response is
* stored in the stop struct rather than the original
* calling command struct
*/
priv->comp_cmd = &priv->cmdcomp;
init_completion(priv->comp_cmd);
priv->cmd = req->data->stop;
wmt_mci_send_command(priv->mmc, req->data->stop->opcode,
7, req->data->stop->arg, 9);
wmt_mci_start_command(priv);
}
}
}
static irqreturn_t wmt_mci_dma_isr(int irq_num, void *data)
{
struct wmt_mci_priv *priv;
int status;
priv = (struct wmt_mci_priv *)data;
status = readl(priv->sdmmc_base + SDDMA_CCR) & 0x0F;
if (status != DMA_CCR_EVT_SUCCESS) {
dev_err(priv->dev, "DMA Error: Status = %d\n", status);
priv->req->data->error = -ETIMEDOUT;
complete(priv->comp_dma);
return IRQ_HANDLED;
}
priv->req->data->error = 0;
wmt_mci_disable_dma(priv);
complete(priv->comp_dma);
if (priv->comp_cmd) {
if (completion_done(priv->comp_cmd)) {
/*
* if the command (regular) interrupt has already
* completed, finish off the request otherwise we wait
* for the command interrupt and finish from there.
*/
wmt_complete_data_request(priv);
}
}
return IRQ_HANDLED;
}
static irqreturn_t wmt_mci_regular_isr(int irq_num, void *data)
{
struct wmt_mci_priv *priv;
u32 status0;
u32 status1;
u32 status2;
u32 reg_tmp;
int cmd_done;
priv = (struct wmt_mci_priv *)data;
cmd_done = 0;
status0 = readb(priv->sdmmc_base + SDMMC_STS0);
status1 = readb(priv->sdmmc_base + SDMMC_STS1);
status2 = readb(priv->sdmmc_base + SDMMC_STS2);
/* Check for card insertion */
reg_tmp = readb(priv->sdmmc_base + SDMMC_INTMASK0);
if ((reg_tmp & INT0_DI_INT_EN) && (status0 & STS0_DEVICE_INS)) {
mmc_detect_change(priv->mmc, 0);
if (priv->cmd)
priv->cmd->error = -ETIMEDOUT;
if (priv->comp_cmd)
complete(priv->comp_cmd);
if (priv->comp_dma) {
wmt_mci_disable_dma(priv);
complete(priv->comp_dma);
}
writeb(STS0_DEVICE_INS, priv->sdmmc_base + SDMMC_STS0);
return IRQ_HANDLED;
}
if ((!priv->req->data) ||
((priv->req->data->stop) && (priv->cmd == priv->req->data->stop))) {
/* handle non-data & stop_transmission requests */
if (status1 & STS1_CMDRSP_DONE) {
priv->cmd->error = 0;
cmd_done = 1;
} else if ((status1 & STS1_RSP_TIMEOUT) ||
(status1 & STS1_DATA_TIMEOUT)) {
priv->cmd->error = -ETIMEDOUT;
cmd_done = 1;
}
if (cmd_done) {
priv->comp_cmd = NULL;
if (!priv->cmd->error)
wmt_mci_read_response(priv->mmc);
priv->cmd = NULL;
mmc_request_done(priv->mmc, priv->req);
}
} else {
/* handle data requests */
if (status1 & STS1_CMDRSP_DONE) {
if (priv->cmd)
priv->cmd->error = 0;
if (priv->comp_cmd)
complete(priv->comp_cmd);
}
if ((status1 & STS1_RSP_TIMEOUT) ||
(status1 & STS1_DATA_TIMEOUT)) {
if (priv->cmd)
priv->cmd->error = -ETIMEDOUT;
if (priv->comp_cmd)
complete(priv->comp_cmd);
if (priv->comp_dma) {
wmt_mci_disable_dma(priv);
complete(priv->comp_dma);
}
}
if (priv->comp_dma) {
/*
* If the dma interrupt has already completed, finish
* off the request; otherwise we wait for the DMA
* interrupt and finish from there.
*/
if (completion_done(priv->comp_dma))
wmt_complete_data_request(priv);
}
}
writeb(status0, priv->sdmmc_base + SDMMC_STS0);
writeb(status1, priv->sdmmc_base + SDMMC_STS1);
writeb(status2, priv->sdmmc_base + SDMMC_STS2);
return IRQ_HANDLED;
}
static void wmt_reset_hardware(struct mmc_host *mmc)
{
struct wmt_mci_priv *priv;
u32 reg_tmp;
priv = mmc_priv(mmc);
/* reset controller */
reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base + SDMMC_BUSMODE);
/* reset response FIFO */
reg_tmp = readb(priv->sdmmc_base + SDMMC_CTLR);
writeb(reg_tmp | CTLR_FIFO_RESET, priv->sdmmc_base + SDMMC_CTLR);
/* enable GPI pin to detect card */
writew(BLKL_INT_ENABLE | BLKL_GPI_CD, priv->sdmmc_base + SDMMC_BLKLEN);
/* clear interrupt status */
writeb(0xFF, priv->sdmmc_base + SDMMC_STS0);
writeb(0xFF, priv->sdmmc_base + SDMMC_STS1);
/* setup interrupts */
writeb(INT0_CD_INT_EN | INT0_DI_INT_EN, priv->sdmmc_base +
SDMMC_INTMASK0);
writeb(INT1_DATA_TOUT_INT_EN | INT1_CMD_RES_TRAN_DONE_INT_EN |
INT1_CMD_RES_TOUT_INT_EN, priv->sdmmc_base + SDMMC_INTMASK1);
/* set the DMA timeout */
writew(8191, priv->sdmmc_base + SDMMC_DMATIMEOUT);
/* auto clock freezing enable */
reg_tmp = readb(priv->sdmmc_base + SDMMC_STS2);
writeb(reg_tmp | STS2_DIS_FORCECLK, priv->sdmmc_base + SDMMC_STS2);
/* set a default clock speed of 400Khz */
clk_set_rate(priv->clk_sdmmc, 400000);
}
static int wmt_dma_init(struct mmc_host *mmc)
{
struct wmt_mci_priv *priv;
priv = mmc_priv(mmc);
writel(DMA_GCR_SOFT_RESET, priv->sdmmc_base + SDDMA_GCR);
writel(DMA_GCR_DMA_EN, priv->sdmmc_base + SDDMA_GCR);
if ((readl(priv->sdmmc_base + SDDMA_GCR) & DMA_GCR_DMA_EN) != 0)
return 0;
else
return 1;
}
static void wmt_dma_init_descriptor(struct wmt_dma_descriptor *desc,
u16 req_count, u32 buffer_addr, u32 branch_addr, int end)
{
desc->flags = 0x40000000 | req_count;
if (end)
desc->flags |= 0x80000000;
desc->data_buffer_addr = buffer_addr;
desc->branch_addr = branch_addr;
}
static void wmt_dma_config(struct mmc_host *mmc, u32 descaddr, u8 dir)
{
struct wmt_mci_priv *priv;
u32 reg_tmp;
priv = mmc_priv(mmc);
/* Enable DMA Interrupts */
writel(DMA_IER_INT_EN, priv->sdmmc_base + SDDMA_IER);
/* Write DMA Descriptor Pointer Register */
writel(descaddr, priv->sdmmc_base + SDDMA_DESPR);
writel(0x00, priv->sdmmc_base + SDDMA_CCR);
if (dir == PDMA_WRITE) {
reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR);
writel(reg_tmp & DMA_CCR_IF_TO_PERIPHERAL, priv->sdmmc_base +
SDDMA_CCR);
} else {
reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR);
writel(reg_tmp | DMA_CCR_PERIPHERAL_TO_IF, priv->sdmmc_base +
SDDMA_CCR);
}
}
static void wmt_dma_start(struct wmt_mci_priv *priv)
{
u32 reg_tmp;
reg_tmp = readl(priv->sdmmc_base + SDDMA_CCR);
writel(reg_tmp | DMA_CCR_RUN, priv->sdmmc_base + SDDMA_CCR);
}
static void wmt_mci_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct wmt_mci_priv *priv;
struct wmt_dma_descriptor *desc;
u8 command;
u8 cmdtype;
u32 arg;
u8 rsptype;
u32 reg_tmp;
struct scatterlist *sg;
int i;
int sg_cnt;
int offset;
u32 dma_address;
int desc_cnt;
priv = mmc_priv(mmc);
priv->req = req;
/*
* Use the cmd variable to pass a pointer to the resp[] structure
* This is required on multi-block requests to pass the pointer to the
* stop command
*/
priv->cmd = req->cmd;
command = req->cmd->opcode;
arg = req->cmd->arg;
rsptype = mmc_resp_type(req->cmd);
cmdtype = 0;
/* rsptype=7 only valid for SPI commands - should be =2 for SD */
if (rsptype == 7)
rsptype = 2;
/* rsptype=21 is R1B, convert for controller */
if (rsptype == 21)
rsptype = 9;
if (!req->data) {
wmt_mci_send_command(mmc, command, cmdtype, arg, rsptype);
wmt_mci_start_command(priv);
/* completion is now handled in the regular_isr() */
}
if (req->data) {
priv->comp_cmd = &priv->cmdcomp;
init_completion(priv->comp_cmd);
wmt_dma_init(mmc);
/* set controller data length */
reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN);
writew((reg_tmp & 0xF800) | (req->data->blksz - 1),
priv->sdmmc_base + SDMMC_BLKLEN);
/* set controller block count */
writew(req->data->blocks, priv->sdmmc_base + SDMMC_BLKCNT);
desc = (struct wmt_dma_descriptor *)priv->dma_desc_buffer;
if (req->data->flags & MMC_DATA_WRITE) {
sg_cnt = dma_map_sg(mmc_dev(mmc), req->data->sg,
req->data->sg_len, DMA_TO_DEVICE);
cmdtype = 1;
if (req->data->blocks > 1)
cmdtype = 3;
} else {
sg_cnt = dma_map_sg(mmc_dev(mmc), req->data->sg,
req->data->sg_len, DMA_FROM_DEVICE);
cmdtype = 2;
if (req->data->blocks > 1)
cmdtype = 4;
}
dma_address = priv->dma_desc_device_addr + 16;
desc_cnt = 0;
for_each_sg(req->data->sg, sg, sg_cnt, i) {
offset = 0;
while (offset < sg_dma_len(sg)) {
wmt_dma_init_descriptor(desc, req->data->blksz,
sg_dma_address(sg)+offset,
dma_address, 0);
desc++;
desc_cnt++;
offset += req->data->blksz;
dma_address += 16;
if (desc_cnt == req->data->blocks)
break;
}
}
desc--;
desc->flags |= 0x80000000;
if (req->data->flags & MMC_DATA_WRITE)
wmt_dma_config(mmc, priv->dma_desc_device_addr,
PDMA_WRITE);
else
wmt_dma_config(mmc, priv->dma_desc_device_addr,
PDMA_READ);
wmt_mci_send_command(mmc, command, cmdtype, arg, rsptype);
priv->comp_dma = &priv->datacomp;
init_completion(priv->comp_dma);
wmt_dma_start(priv);
wmt_mci_start_command(priv);
}
}
static void wmt_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct wmt_mci_priv *priv;
u32 reg_tmp;
priv = mmc_priv(mmc);
if (ios->power_mode == MMC_POWER_UP) {
wmt_reset_hardware(mmc);
wmt_set_sd_power(priv, WMT_SD_POWER_ON);
}
if (ios->power_mode == MMC_POWER_OFF)
wmt_set_sd_power(priv, WMT_SD_POWER_OFF);
if (ios->clock != 0)
clk_set_rate(priv->clk_sdmmc, ios->clock);
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
reg_tmp = readb(priv->sdmmc_base + SDMMC_EXTCTRL);
writeb(reg_tmp | 0x04, priv->sdmmc_base + SDMMC_EXTCTRL);
break;
case MMC_BUS_WIDTH_4:
reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
writeb(reg_tmp | BM_FOURBIT_MODE, priv->sdmmc_base +
SDMMC_BUSMODE);
reg_tmp = readb(priv->sdmmc_base + SDMMC_EXTCTRL);
writeb(reg_tmp & 0xFB, priv->sdmmc_base + SDMMC_EXTCTRL);
break;
case MMC_BUS_WIDTH_1:
reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
writeb(reg_tmp & BM_ONEBIT_MASK, priv->sdmmc_base +
SDMMC_BUSMODE);
reg_tmp = readb(priv->sdmmc_base + SDMMC_EXTCTRL);
writeb(reg_tmp & 0xFB, priv->sdmmc_base + SDMMC_EXTCTRL);
break;
}
}
static int wmt_mci_get_ro(struct mmc_host *mmc)
{
struct wmt_mci_priv *priv = mmc_priv(mmc);
return !(readb(priv->sdmmc_base + SDMMC_STS0) & STS0_WRITE_PROTECT);
}
static int wmt_mci_get_cd(struct mmc_host *mmc)
{
struct wmt_mci_priv *priv = mmc_priv(mmc);
u32 cd = (readb(priv->sdmmc_base + SDMMC_STS0) & STS0_CD_GPI) >> 3;
return !(cd ^ priv->cd_inverted);
}
static struct mmc_host_ops wmt_mci_ops = {
.request = wmt_mci_request,
.set_ios = wmt_mci_set_ios,
.get_ro = wmt_mci_get_ro,
.get_cd = wmt_mci_get_cd,
};
/* Controller capabilities */
static struct wmt_mci_caps wm8505_caps = {
.f_min = 390425,
.f_max = 50000000,
.ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34,
.caps = MMC_CAP_4_BIT_DATA | MMC_CAP_MMC_HIGHSPEED |
MMC_CAP_SD_HIGHSPEED,
.max_seg_size = 65024,
.max_segs = 128,
.max_blk_size = 2048,
};
static struct of_device_id wmt_mci_dt_ids[] = {
{ .compatible = "wm,wm8505-sdhc", .data = &wm8505_caps },
{ /* Sentinel */ },
};
static int wmt_mci_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct wmt_mci_priv *priv;
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id =
of_match_device(wmt_mci_dt_ids, &pdev->dev);
const struct wmt_mci_caps *wmt_caps = of_id->data;
int ret;
int regular_irq, dma_irq;
if (!of_id || !of_id->data) {
dev_err(&pdev->dev, "Controller capabilities data missing\n");
return -EFAULT;
}
if (!np) {
dev_err(&pdev->dev, "Missing SDMMC description in devicetree\n");
return -EFAULT;
}
regular_irq = irq_of_parse_and_map(np, 0);
dma_irq = irq_of_parse_and_map(np, 1);
if (!regular_irq || !dma_irq) {
dev_err(&pdev->dev, "Getting IRQs failed!\n");
ret = -ENXIO;
goto fail1;
}
mmc = mmc_alloc_host(sizeof(struct wmt_mci_priv), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "Failed to allocate mmc_host\n");
ret = -ENOMEM;
goto fail1;
}
mmc->ops = &wmt_mci_ops;
mmc->f_min = wmt_caps->f_min;
mmc->f_max = wmt_caps->f_max;
mmc->ocr_avail = wmt_caps->ocr_avail;
mmc->caps = wmt_caps->caps;
mmc->max_seg_size = wmt_caps->max_seg_size;
mmc->max_segs = wmt_caps->max_segs;
mmc->max_blk_size = wmt_caps->max_blk_size;
mmc->max_req_size = (16*512*mmc->max_segs);
mmc->max_blk_count = mmc->max_req_size / 512;
priv = mmc_priv(mmc);
priv->mmc = mmc;
priv->dev = &pdev->dev;
priv->power_inverted = 0;
priv->cd_inverted = 0;
if (of_get_property(np, "sdon-inverted", NULL))
priv->power_inverted = 1;
if (of_get_property(np, "cd-inverted", NULL))
priv->cd_inverted = 1;
priv->sdmmc_base = of_iomap(np, 0);
if (!priv->sdmmc_base) {
dev_err(&pdev->dev, "Failed to map IO space\n");
ret = -ENOMEM;
goto fail2;
}
priv->irq_regular = regular_irq;
priv->irq_dma = dma_irq;
ret = request_irq(regular_irq, wmt_mci_regular_isr, 0, "sdmmc", priv);
if (ret) {
dev_err(&pdev->dev, "Register regular IRQ fail\n");
goto fail3;
}
ret = request_irq(dma_irq, wmt_mci_dma_isr, 32, "sdmmc", priv);
if (ret) {
dev_err(&pdev->dev, "Register DMA IRQ fail\n");
goto fail4;
}
/* alloc some DMA buffers for descriptors/transfers */
priv->dma_desc_buffer = dma_alloc_coherent(&pdev->dev,
mmc->max_blk_count * 16,
&priv->dma_desc_device_addr,
208);
if (!priv->dma_desc_buffer) {
dev_err(&pdev->dev, "DMA alloc fail\n");
ret = -EPERM;
goto fail5;
}
platform_set_drvdata(pdev, mmc);
priv->clk_sdmmc = of_clk_get(np, 0);
if (IS_ERR(priv->clk_sdmmc)) {
dev_err(&pdev->dev, "Error getting clock\n");
ret = PTR_ERR(priv->clk_sdmmc);
goto fail5;
}
clk_prepare_enable(priv->clk_sdmmc);
/* configure the controller to a known 'ready' state */
wmt_reset_hardware(mmc);
mmc_add_host(mmc);
dev_info(&pdev->dev, "WMT SDHC Controller initialized\n");
return 0;
fail5:
free_irq(dma_irq, priv);
fail4:
free_irq(regular_irq, priv);
fail3:
iounmap(priv->sdmmc_base);
fail2:
mmc_free_host(mmc);
fail1:
return ret;
}
static int wmt_mci_remove(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct wmt_mci_priv *priv;
struct resource *res;
u32 reg_tmp;
mmc = platform_get_drvdata(pdev);
priv = mmc_priv(mmc);
/* reset SD controller */
reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
writel(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base + SDMMC_BUSMODE);
reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN);
writew(reg_tmp & ~(0xA000), priv->sdmmc_base + SDMMC_BLKLEN);
writeb(0xFF, priv->sdmmc_base + SDMMC_STS0);
writeb(0xFF, priv->sdmmc_base + SDMMC_STS1);
/* release the dma buffers */
dma_free_coherent(&pdev->dev, priv->mmc->max_blk_count * 16,
priv->dma_desc_buffer, priv->dma_desc_device_addr);
mmc_remove_host(mmc);
free_irq(priv->irq_regular, priv);
free_irq(priv->irq_dma, priv);
iounmap(priv->sdmmc_base);
clk_disable_unprepare(priv->clk_sdmmc);
clk_put(priv->clk_sdmmc);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, resource_size(res));
mmc_free_host(mmc);
dev_info(&pdev->dev, "WMT MCI device removed\n");
return 0;
}
#ifdef CONFIG_PM
static int wmt_mci_suspend(struct device *dev)
{
u32 reg_tmp;
struct platform_device *pdev = to_platform_device(dev);
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct wmt_mci_priv *priv;
int ret;
if (!mmc)
return 0;
priv = mmc_priv(mmc);
ret = mmc_suspend_host(mmc);
if (!ret) {
reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base +
SDMMC_BUSMODE);
reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN);
writew(reg_tmp & 0x5FFF, priv->sdmmc_base + SDMMC_BLKLEN);
writeb(0xFF, priv->sdmmc_base + SDMMC_STS0);
writeb(0xFF, priv->sdmmc_base + SDMMC_STS1);
clk_disable(priv->clk_sdmmc);
}
return ret;
}
static int wmt_mci_resume(struct device *dev)
{
u32 reg_tmp;
struct platform_device *pdev = to_platform_device(dev);
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct wmt_mci_priv *priv;
int ret = 0;
if (mmc) {
priv = mmc_priv(mmc);
clk_enable(priv->clk_sdmmc);
reg_tmp = readb(priv->sdmmc_base + SDMMC_BUSMODE);
writeb(reg_tmp | BM_SOFT_RESET, priv->sdmmc_base +
SDMMC_BUSMODE);
reg_tmp = readw(priv->sdmmc_base + SDMMC_BLKLEN);
writew(reg_tmp | (BLKL_GPI_CD | BLKL_INT_ENABLE),
priv->sdmmc_base + SDMMC_BLKLEN);
reg_tmp = readb(priv->sdmmc_base + SDMMC_INTMASK0);
writeb(reg_tmp | INT0_DI_INT_EN, priv->sdmmc_base +
SDMMC_INTMASK0);
ret = mmc_resume_host(mmc);
}
return ret;
}
static const struct dev_pm_ops wmt_mci_pm = {
.suspend = wmt_mci_suspend,
.resume = wmt_mci_resume,
};
#define wmt_mci_pm_ops (&wmt_mci_pm)
#else /* !CONFIG_PM */
#define wmt_mci_pm_ops NULL
#endif
static struct platform_driver wmt_mci_driver = {
.probe = wmt_mci_probe,
.remove = wmt_mci_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.pm = wmt_mci_pm_ops,
.of_match_table = wmt_mci_dt_ids,
},
};
module_platform_driver(wmt_mci_driver);
MODULE_DESCRIPTION("Wondermedia MMC/SD Driver");
MODULE_AUTHOR("Tony Prisk");
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(of, wmt_mci_dt_ids);