linux_dsm_epyc7002/net/ax25/ax25_in.c

456 lines
10 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
* Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
* Copyright (C) Joerg Reuter DL1BKE (jreuter@yaina.de)
* Copyright (C) Hans-Joachim Hetscher DD8NE (dd8ne@bnv-bamberg.de)
*/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <net/ax25.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/netfilter.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <asm/uaccess.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
/*
* Given a fragment, queue it on the fragment queue and if the fragment
* is complete, send it back to ax25_rx_iframe.
*/
static int ax25_rx_fragment(ax25_cb *ax25, struct sk_buff *skb)
{
struct sk_buff *skbn, *skbo;
if (ax25->fragno != 0) {
if (!(*skb->data & AX25_SEG_FIRST)) {
if ((ax25->fragno - 1) == (*skb->data & AX25_SEG_REM)) {
/* Enqueue fragment */
ax25->fragno = *skb->data & AX25_SEG_REM;
skb_pull(skb, 1); /* skip fragno */
ax25->fraglen += skb->len;
skb_queue_tail(&ax25->frag_queue, skb);
/* Last fragment received ? */
if (ax25->fragno == 0) {
skbn = alloc_skb(AX25_MAX_HEADER_LEN +
ax25->fraglen,
GFP_ATOMIC);
if (!skbn) {
skb_queue_purge(&ax25->frag_queue);
return 1;
}
skb_reserve(skbn, AX25_MAX_HEADER_LEN);
skbn->dev = ax25->ax25_dev->dev;
skb_reset_network_header(skbn);
skb_reset_transport_header(skbn);
/* Copy data from the fragments */
while ((skbo = skb_dequeue(&ax25->frag_queue)) != NULL) {
skb_copy_from_linear_data(skbo,
skb_put(skbn, skbo->len),
skbo->len);
kfree_skb(skbo);
}
ax25->fraglen = 0;
if (ax25_rx_iframe(ax25, skbn) == 0)
kfree_skb(skbn);
}
return 1;
}
}
} else {
/* First fragment received */
if (*skb->data & AX25_SEG_FIRST) {
skb_queue_purge(&ax25->frag_queue);
ax25->fragno = *skb->data & AX25_SEG_REM;
skb_pull(skb, 1); /* skip fragno */
ax25->fraglen = skb->len;
skb_queue_tail(&ax25->frag_queue, skb);
return 1;
}
}
return 0;
}
/*
* This is where all valid I frames are sent to, to be dispatched to
* whichever protocol requires them.
*/
int ax25_rx_iframe(ax25_cb *ax25, struct sk_buff *skb)
{
int (*func)(struct sk_buff *, ax25_cb *);
unsigned char pid;
int queued = 0;
if (skb == NULL) return 0;
ax25_start_idletimer(ax25);
pid = *skb->data;
if (pid == AX25_P_IP) {
/* working around a TCP bug to keep additional listeners
* happy. TCP re-uses the buffer and destroys the original
* content.
*/
struct sk_buff *skbn = skb_copy(skb, GFP_ATOMIC);
if (skbn != NULL) {
kfree_skb(skb);
skb = skbn;
}
skb_pull(skb, 1); /* Remove PID */
skb->mac_header = skb->network_header;
skb_reset_network_header(skb);
skb->dev = ax25->ax25_dev->dev;
skb->pkt_type = PACKET_HOST;
skb->protocol = htons(ETH_P_IP);
netif_rx(skb);
return 1;
}
if (pid == AX25_P_SEGMENT) {
skb_pull(skb, 1); /* Remove PID */
return ax25_rx_fragment(ax25, skb);
}
if ((func = ax25_protocol_function(pid)) != NULL) {
skb_pull(skb, 1); /* Remove PID */
return (*func)(skb, ax25);
}
if (ax25->sk != NULL && ax25->ax25_dev->values[AX25_VALUES_CONMODE] == 2) {
if ((!ax25->pidincl && ax25->sk->sk_protocol == pid) ||
ax25->pidincl) {
if (sock_queue_rcv_skb(ax25->sk, skb) == 0)
queued = 1;
else
ax25->condition |= AX25_COND_OWN_RX_BUSY;
}
}
return queued;
}
/*
* Higher level upcall for a LAPB frame
*/
static int ax25_process_rx_frame(ax25_cb *ax25, struct sk_buff *skb, int type, int dama)
{
int queued = 0;
if (ax25->state == AX25_STATE_0)
return 0;
switch (ax25->ax25_dev->values[AX25_VALUES_PROTOCOL]) {
case AX25_PROTO_STD_SIMPLEX:
case AX25_PROTO_STD_DUPLEX:
queued = ax25_std_frame_in(ax25, skb, type);
break;
#ifdef CONFIG_AX25_DAMA_SLAVE
case AX25_PROTO_DAMA_SLAVE:
if (dama || ax25->ax25_dev->dama.slave)
queued = ax25_ds_frame_in(ax25, skb, type);
else
queued = ax25_std_frame_in(ax25, skb, type);
break;
#endif
}
return queued;
}
static int ax25_rcv(struct sk_buff *skb, struct net_device *dev,
ax25_address *dev_addr, struct packet_type *ptype)
{
ax25_address src, dest, *next_digi = NULL;
int type = 0, mine = 0, dama;
struct sock *make, *sk;
ax25_digi dp, reverse_dp;
ax25_cb *ax25;
ax25_dev *ax25_dev;
/*
* Process the AX.25/LAPB frame.
*/
skb_reset_transport_header(skb);
if ((ax25_dev = ax25_dev_ax25dev(dev)) == NULL)
goto free;
/*
* Parse the address header.
*/
if (ax25_addr_parse(skb->data, skb->len, &src, &dest, &dp, &type, &dama) == NULL)
goto free;
/*
* Ours perhaps ?
*/
if (dp.lastrepeat + 1 < dp.ndigi) /* Not yet digipeated completely */
next_digi = &dp.calls[dp.lastrepeat + 1];
/*
* Pull of the AX.25 headers leaving the CTRL/PID bytes
*/
skb_pull(skb, ax25_addr_size(&dp));
/* For our port addresses ? */
if (ax25cmp(&dest, dev_addr) == 0 && dp.lastrepeat + 1 == dp.ndigi)
mine = 1;
/* Also match on any registered callsign from L3/4 */
if (!mine && ax25_listen_mine(&dest, dev) && dp.lastrepeat + 1 == dp.ndigi)
mine = 1;
/* UI frame - bypass LAPB processing */
if ((*skb->data & ~0x10) == AX25_UI && dp.lastrepeat + 1 == dp.ndigi) {
skb_set_transport_header(skb, 2); /* skip control and pid */
ax25_send_to_raw(&dest, skb, skb->data[1]);
if (!mine && ax25cmp(&dest, (ax25_address *)dev->broadcast) != 0)
goto free;
/* Now we are pointing at the pid byte */
switch (skb->data[1]) {
case AX25_P_IP:
skb_pull(skb,2); /* drop PID/CTRL */
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
skb->dev = dev;
skb->pkt_type = PACKET_HOST;
skb->protocol = htons(ETH_P_IP);
netif_rx(skb);
break;
case AX25_P_ARP:
skb_pull(skb,2);
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
skb->dev = dev;
skb->pkt_type = PACKET_HOST;
skb->protocol = htons(ETH_P_ARP);
netif_rx(skb);
break;
case AX25_P_TEXT:
/* Now find a suitable dgram socket */
sk = ax25_get_socket(&dest, &src, SOCK_DGRAM);
if (sk != NULL) {
bh_lock_sock(sk);
if (atomic_read(&sk->sk_rmem_alloc) >=
sk->sk_rcvbuf) {
kfree_skb(skb);
} else {
/*
* Remove the control and PID.
*/
skb_pull(skb, 2);
if (sock_queue_rcv_skb(sk, skb) != 0)
kfree_skb(skb);
}
bh_unlock_sock(sk);
sock_put(sk);
} else {
kfree_skb(skb);
}
break;
default:
kfree_skb(skb); /* Will scan SOCK_AX25 RAW sockets */
break;
}
return 0;
}
/*
* Is connected mode supported on this device ?
* If not, should we DM the incoming frame (except DMs) or
* silently ignore them. For now we stay quiet.
*/
if (ax25_dev->values[AX25_VALUES_CONMODE] == 0)
goto free;
/* LAPB */
/* AX.25 state 1-4 */
ax25_digi_invert(&dp, &reverse_dp);
if ((ax25 = ax25_find_cb(&dest, &src, &reverse_dp, dev)) != NULL) {
/*
* Process the frame. If it is queued up internally it
* returns one otherwise we free it immediately. This
* routine itself wakes the user context layers so we do
* no further work
*/
if (ax25_process_rx_frame(ax25, skb, type, dama) == 0)
kfree_skb(skb);
ax25_cb_put(ax25);
return 0;
}
/* AX.25 state 0 (disconnected) */
/* a) received not a SABM(E) */
if ((*skb->data & ~AX25_PF) != AX25_SABM &&
(*skb->data & ~AX25_PF) != AX25_SABME) {
/*
* Never reply to a DM. Also ignore any connects for
* addresses that are not our interfaces and not a socket.
*/
if ((*skb->data & ~AX25_PF) != AX25_DM && mine)
ax25_return_dm(dev, &src, &dest, &dp);
goto free;
}
/* b) received SABM(E) */
if (dp.lastrepeat + 1 == dp.ndigi)
sk = ax25_find_listener(&dest, 0, dev, SOCK_SEQPACKET);
else
sk = ax25_find_listener(next_digi, 1, dev, SOCK_SEQPACKET);
if (sk != NULL) {
bh_lock_sock(sk);
if (sk_acceptq_is_full(sk) ||
(make = ax25_make_new(sk, ax25_dev)) == NULL) {
if (mine)
ax25_return_dm(dev, &src, &dest, &dp);
kfree_skb(skb);
bh_unlock_sock(sk);
sock_put(sk);
return 0;
}
ax25 = ax25_sk(make);
skb_set_owner_r(skb, make);
skb_queue_head(&sk->sk_receive_queue, skb);
make->sk_state = TCP_ESTABLISHED;
sk->sk_ack_backlog++;
bh_unlock_sock(sk);
} else {
if (!mine)
goto free;
if ((ax25 = ax25_create_cb()) == NULL) {
ax25_return_dm(dev, &src, &dest, &dp);
goto free;
}
ax25_fillin_cb(ax25, ax25_dev);
}
ax25->source_addr = dest;
ax25->dest_addr = src;
/*
* Sort out any digipeated paths.
*/
if (dp.ndigi && !ax25->digipeat &&
(ax25->digipeat = kmalloc(sizeof(ax25_digi), GFP_ATOMIC)) == NULL) {
kfree_skb(skb);
ax25_destroy_socket(ax25);
if (sk)
sock_put(sk);
return 0;
}
if (dp.ndigi == 0) {
kfree(ax25->digipeat);
ax25->digipeat = NULL;
} else {
/* Reverse the source SABM's path */
memcpy(ax25->digipeat, &reverse_dp, sizeof(ax25_digi));
}
if ((*skb->data & ~AX25_PF) == AX25_SABME) {
ax25->modulus = AX25_EMODULUS;
ax25->window = ax25_dev->values[AX25_VALUES_EWINDOW];
} else {
ax25->modulus = AX25_MODULUS;
ax25->window = ax25_dev->values[AX25_VALUES_WINDOW];
}
ax25_send_control(ax25, AX25_UA, AX25_POLLON, AX25_RESPONSE);
#ifdef CONFIG_AX25_DAMA_SLAVE
if (dama && ax25->ax25_dev->values[AX25_VALUES_PROTOCOL] == AX25_PROTO_DAMA_SLAVE)
ax25_dama_on(ax25);
#endif
ax25->state = AX25_STATE_3;
ax25_cb_add(ax25);
ax25_start_heartbeat(ax25);
ax25_start_t3timer(ax25);
ax25_start_idletimer(ax25);
if (sk) {
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_data_ready(sk);
sock_put(sk);
} else {
free:
kfree_skb(skb);
}
return 0;
}
/*
* Receive an AX.25 frame via a SLIP interface.
*/
int ax25_kiss_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *ptype, struct net_device *orig_dev)
{
skb_orphan(skb);
if (!net_eq(dev_net(dev), &init_net)) {
kfree_skb(skb);
return 0;
}
if ((*skb->data & 0x0F) != 0) {
kfree_skb(skb); /* Not a KISS data frame */
return 0;
}
skb_pull(skb, AX25_KISS_HEADER_LEN); /* Remove the KISS byte */
return ax25_rcv(skb, dev, (ax25_address *)dev->dev_addr, ptype);
}