linux_dsm_epyc7002/drivers/pci/Makefile

40 lines
1.2 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for the PCI bus specific drivers.
obj-$(CONFIG_PCI) += access.o bus.o probe.o host-bridge.o \
remove.o pci.o pci-driver.o search.o \
pci-sysfs.o rom.o setup-res.o irq.o vpd.o \
setup-bus.o vc.o mmap.o setup-irq.o
ifdef CONFIG_PCI
obj-$(CONFIG_PROC_FS) += proc.o
obj-$(CONFIG_SYSFS) += slot.o
obj-$(CONFIG_OF) += of.o
endif
obj-$(CONFIG_PCI_QUIRKS) += quirks.o
obj-$(CONFIG_PCIEPORTBUS) += pcie/
obj-$(CONFIG_HOTPLUG_PCI) += hotplug/
obj-$(CONFIG_PCI_MSI) += msi.o
obj-$(CONFIG_PCI_ATS) += ats.o
obj-$(CONFIG_PCI_IOV) += iov.o
PCI: Introduce PCI bridge emulated config space common logic Some PCI host controllers do not expose a configuration space for the root port PCI bridge. Due to this, the Marvell Armada 370/38x/XP PCI controller driver (pci-mvebu) emulates a root port PCI bridge configuration space, and uses that to (among other things) dynamically create the memory windows that correspond to the PCI MEM and I/O regions. Since we now need to add a very similar logic for the Marvell Armada 37xx PCI controller driver (pci-aardvark), instead of duplicating the code, we create in this commit a common logic called pci-bridge-emul. The idea of this logic is to emulate a root port PCI bridge configuration space by providing configuration space read/write operations, and faking behind the scenes the configuration space of a PCI bridge. A PCI host controller driver simply has to call pci_bridge_emul_conf_read() and pci_bridge_emul_conf_write() to read/write the configuration space of the bridge. By default, the PCI bridge configuration space is simply emulated by a chunk of memory, but the PCI host controller can override the behavior of the read and write operations on a per-register basis to do additional actions if needed. We take care of complying with the behavior of the PCI configuration space registers in terms of bits that are read-write, read-only, reserved and write-1-to-clear. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@bootlin.com> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Reviewed-by: Russell King <rmk+kernel@armlinux.org.uk>
2018-10-18 22:37:16 +07:00
obj-$(CONFIG_PCI_BRIDGE_EMUL) += pci-bridge-emul.o
obj-$(CONFIG_ACPI) += pci-acpi.o
obj-$(CONFIG_PCI_LABEL) += pci-label.o
obj-$(CONFIG_X86_INTEL_MID) += pci-mid.o
obj-$(CONFIG_PCI_SYSCALL) += syscall.o
obj-$(CONFIG_PCI_STUB) += pci-stub.o
obj-$(CONFIG_PCI_PF_STUB) += pci-pf-stub.o
obj-$(CONFIG_PCI_ECAM) += ecam.o
PCI/P2PDMA: Support peer-to-peer memory Some PCI devices may have memory mapped in a BAR space that's intended for use in peer-to-peer transactions. To enable such transactions the memory must be registered with ZONE_DEVICE pages so it can be used by DMA interfaces in existing drivers. Add an interface for other subsystems to find and allocate chunks of P2P memory as necessary to facilitate transfers between two PCI peers: struct pci_dev *pci_p2pmem_find[_many](); int pci_p2pdma_distance[_many](); void *pci_alloc_p2pmem(); The new interface requires a driver to collect a list of client devices involved in the transaction then call pci_p2pmem_find() to obtain any suitable P2P memory. Alternatively, if the caller knows a device which provides P2P memory, they can use pci_p2pdma_distance() to determine if it is usable. With a suitable p2pmem device, memory can then be allocated with pci_alloc_p2pmem() for use in DMA transactions. Depending on hardware, using peer-to-peer memory may reduce the bandwidth of the transfer but can significantly reduce pressure on system memory. This may be desirable in many cases: for example a system could be designed with a small CPU connected to a PCIe switch by a small number of lanes which would maximize the number of lanes available to connect to NVMe devices. The code is designed to only utilize the p2pmem device if all the devices involved in a transfer are behind the same PCI bridge. This is because we have no way of knowing whether peer-to-peer routing between PCIe Root Ports is supported (PCIe r4.0, sec 1.3.1). Additionally, the benefits of P2P transfers that go through the RC is limited to only reducing DRAM usage and, in some cases, coding convenience. The PCI-SIG may be exploring adding a new capability bit to advertise whether this is possible for future hardware. This commit includes significant rework and feedback from Christoph Hellwig. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Logan Gunthorpe <logang@deltatee.com> [bhelgaas: fold in fix from Keith Busch <keith.busch@intel.com>: https://lore.kernel.org/linux-pci/20181012155920.15418-1-keith.busch@intel.com, to address comment from Dan Carpenter <dan.carpenter@oracle.com>, fold in https://lore.kernel.org/linux-pci/20181017160510.17926-1-logang@deltatee.com] Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2018-10-05 04:27:35 +07:00
obj-$(CONFIG_PCI_P2PDMA) += p2pdma.o
obj-$(CONFIG_XEN_PCIDEV_FRONTEND) += xen-pcifront.o
# Endpoint library must be initialized before its users
obj-$(CONFIG_PCI_ENDPOINT) += endpoint/
obj-y += controller/
obj-y += switch/
ccflags-$(CONFIG_PCI_DEBUG) := -DDEBUG