linux_dsm_epyc7002/drivers/firewire/net.c

1721 lines
43 KiB
C
Raw Normal View History

/*
* IPv4 over IEEE 1394, per RFC 2734
*
* Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
*
* based on eth1394 by Ben Collins et al
*/
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/ethtool.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/highmem.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/jiffies.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <net/arp.h>
/* rx limits */
#define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
#define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
/* tx limits */
#define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
#define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
#define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
#define IEEE1394_BROADCAST_CHANNEL 31
#define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
#define IEEE1394_MAX_PAYLOAD_S100 512
#define FWNET_NO_FIFO_ADDR (~0ULL)
#define IANA_SPECIFIER_ID 0x00005eU
#define RFC2734_SW_VERSION 0x000001U
#define IEEE1394_GASP_HDR_SIZE 8
#define RFC2374_UNFRAG_HDR_SIZE 4
#define RFC2374_FRAG_HDR_SIZE 8
#define RFC2374_FRAG_OVERHEAD 4
#define RFC2374_HDR_UNFRAG 0 /* unfragmented */
#define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
#define RFC2374_HDR_LASTFRAG 2 /* last fragment */
#define RFC2374_HDR_INTFRAG 3 /* interior fragment */
#define RFC2734_HW_ADDR_LEN 16
struct rfc2734_arp {
__be16 hw_type; /* 0x0018 */
__be16 proto_type; /* 0x0806 */
u8 hw_addr_len; /* 16 */
u8 ip_addr_len; /* 4 */
__be16 opcode; /* ARP Opcode */
/* Above is exactly the same format as struct arphdr */
__be64 s_uniq_id; /* Sender's 64bit EUI */
u8 max_rec; /* Sender's max packet size */
u8 sspd; /* Sender's max speed */
__be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
__be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
__be32 sip; /* Sender's IP Address */
__be32 tip; /* IP Address of requested hw addr */
} __packed;
/* This header format is specific to this driver implementation. */
#define FWNET_ALEN 8
#define FWNET_HLEN 10
struct fwnet_header {
u8 h_dest[FWNET_ALEN]; /* destination address */
__be16 h_proto; /* packet type ID field */
} __packed;
/* IPv4 and IPv6 encapsulation header */
struct rfc2734_header {
u32 w0;
u32 w1;
};
#define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
#define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
#define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
#define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
#define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
#define fwnet_set_hdr_lf(lf) ((lf) << 30)
#define fwnet_set_hdr_ether_type(et) (et)
#define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
#define fwnet_set_hdr_fg_off(fgo) (fgo)
#define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
unsigned ether_type)
{
hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
| fwnet_set_hdr_ether_type(ether_type);
}
static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
unsigned ether_type, unsigned dg_size, unsigned dgl)
{
hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
| fwnet_set_hdr_dg_size(dg_size)
| fwnet_set_hdr_ether_type(ether_type);
hdr->w1 = fwnet_set_hdr_dgl(dgl);
}
static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
{
hdr->w0 = fwnet_set_hdr_lf(lf)
| fwnet_set_hdr_dg_size(dg_size)
| fwnet_set_hdr_fg_off(fg_off);
hdr->w1 = fwnet_set_hdr_dgl(dgl);
}
/* This list keeps track of what parts of the datagram have been filled in */
struct fwnet_fragment_info {
struct list_head fi_link;
u16 offset;
u16 len;
};
struct fwnet_partial_datagram {
struct list_head pd_link;
struct list_head fi_list;
struct sk_buff *skb;
/* FIXME Why not use skb->data? */
char *pbuf;
u16 datagram_label;
u16 ether_type;
u16 datagram_size;
};
static DEFINE_MUTEX(fwnet_device_mutex);
static LIST_HEAD(fwnet_device_list);
struct fwnet_device {
struct list_head dev_link;
spinlock_t lock;
enum {
FWNET_BROADCAST_ERROR,
FWNET_BROADCAST_RUNNING,
FWNET_BROADCAST_STOPPED,
} broadcast_state;
struct fw_iso_context *broadcast_rcv_context;
struct fw_iso_buffer broadcast_rcv_buffer;
void **broadcast_rcv_buffer_ptrs;
unsigned broadcast_rcv_next_ptr;
unsigned num_broadcast_rcv_ptrs;
unsigned rcv_buffer_size;
/*
* This value is the maximum unfragmented datagram size that can be
* sent by the hardware. It already has the GASP overhead and the
* unfragmented datagram header overhead calculated into it.
*/
unsigned broadcast_xmt_max_payload;
u16 broadcast_xmt_datagramlabel;
/*
* The CSR address that remote nodes must send datagrams to for us to
* receive them.
*/
struct fw_address_handler handler;
u64 local_fifo;
/* Number of tx datagrams that have been queued but not yet acked */
int queued_datagrams;
int peer_count;
struct list_head peer_list;
struct fw_card *card;
struct net_device *netdev;
};
struct fwnet_peer {
struct list_head peer_link;
struct fwnet_device *dev;
u64 guid;
u64 fifo;
__be32 ip;
/* guarded by dev->lock */
struct list_head pd_list; /* received partial datagrams */
unsigned pdg_size; /* pd_list size */
u16 datagram_label; /* outgoing datagram label */
u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
int node_id;
int generation;
unsigned speed;
};
/* This is our task struct. It's used for the packet complete callback. */
struct fwnet_packet_task {
struct fw_transaction transaction;
struct rfc2734_header hdr;
struct sk_buff *skb;
struct fwnet_device *dev;
int outstanding_pkts;
u64 fifo_addr;
u16 dest_node;
u16 max_payload;
u8 generation;
u8 speed;
u8 enqueued;
};
/*
* saddr == NULL means use device source address.
* daddr == NULL means leave destination address (eg unresolved arp).
*/
static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
unsigned short type, const void *daddr,
const void *saddr, unsigned len)
{
struct fwnet_header *h;
h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
put_unaligned_be16(type, &h->h_proto);
if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
memset(h->h_dest, 0, net->addr_len);
return net->hard_header_len;
}
if (daddr) {
memcpy(h->h_dest, daddr, net->addr_len);
return net->hard_header_len;
}
return -net->hard_header_len;
}
static int fwnet_header_rebuild(struct sk_buff *skb)
{
struct fwnet_header *h = (struct fwnet_header *)skb->data;
if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
return arp_find((unsigned char *)&h->h_dest, skb);
fw_notify("%s: unable to resolve type %04x addresses\n",
skb->dev->name, be16_to_cpu(h->h_proto));
return 0;
}
static int fwnet_header_cache(const struct neighbour *neigh,
struct hh_cache *hh, __be16 type)
{
struct net_device *net;
struct fwnet_header *h;
if (type == cpu_to_be16(ETH_P_802_3))
return -1;
net = neigh->dev;
h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
h->h_proto = type;
memcpy(h->h_dest, neigh->ha, net->addr_len);
hh->hh_len = FWNET_HLEN;
return 0;
}
/* Called by Address Resolution module to notify changes in address. */
static void fwnet_header_cache_update(struct hh_cache *hh,
const struct net_device *net, const unsigned char *haddr)
{
memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
}
static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
{
memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
return FWNET_ALEN;
}
static const struct header_ops fwnet_header_ops = {
.create = fwnet_header_create,
.rebuild = fwnet_header_rebuild,
.cache = fwnet_header_cache,
.cache_update = fwnet_header_cache_update,
.parse = fwnet_header_parse,
};
/* FIXME: is this correct for all cases? */
static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
unsigned offset, unsigned len)
{
struct fwnet_fragment_info *fi;
unsigned end = offset + len;
list_for_each_entry(fi, &pd->fi_list, fi_link)
if (offset < fi->offset + fi->len && end > fi->offset)
return true;
return false;
}
/* Assumes that new fragment does not overlap any existing fragments */
static struct fwnet_fragment_info *fwnet_frag_new(
struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
{
struct fwnet_fragment_info *fi, *fi2, *new;
struct list_head *list;
list = &pd->fi_list;
list_for_each_entry(fi, &pd->fi_list, fi_link) {
if (fi->offset + fi->len == offset) {
/* The new fragment can be tacked on to the end */
/* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fi_link.next,
struct fwnet_fragment_info, fi_link);
if (fi->offset + fi->len == fi2->offset) {
/* glue fragments together */
fi->len += len + fi2->len;
list_del(&fi2->fi_link);
kfree(fi2);
} else {
fi->len += len;
}
return fi;
}
if (offset + len == fi->offset) {
/* The new fragment can be tacked on to the beginning */
/* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fi_link.prev,
struct fwnet_fragment_info, fi_link);
if (fi2->offset + fi2->len == fi->offset) {
/* glue fragments together */
fi2->len += fi->len + len;
list_del(&fi->fi_link);
kfree(fi);
return fi2;
}
fi->offset = offset;
fi->len += len;
return fi;
}
if (offset > fi->offset + fi->len) {
list = &fi->fi_link;
break;
}
if (offset + len < fi->offset) {
list = fi->fi_link.prev;
break;
}
}
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new) {
fw_error("out of memory\n");
return NULL;
}
new->offset = offset;
new->len = len;
list_add(&new->fi_link, list);
return new;
}
static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
void *frag_buf, unsigned frag_off, unsigned frag_len)
{
struct fwnet_partial_datagram *new;
struct fwnet_fragment_info *fi;
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
goto fail;
INIT_LIST_HEAD(&new->fi_list);
fi = fwnet_frag_new(new, frag_off, frag_len);
if (fi == NULL)
goto fail_w_new;
new->datagram_label = datagram_label;
new->datagram_size = dg_size;
new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
if (new->skb == NULL)
goto fail_w_fi;
skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
new->pbuf = skb_put(new->skb, dg_size);
memcpy(new->pbuf + frag_off, frag_buf, frag_len);
list_add_tail(&new->pd_link, &peer->pd_list);
return new;
fail_w_fi:
kfree(fi);
fail_w_new:
kfree(new);
fail:
fw_error("out of memory\n");
return NULL;
}
static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
u16 datagram_label)
{
struct fwnet_partial_datagram *pd;
list_for_each_entry(pd, &peer->pd_list, pd_link)
if (pd->datagram_label == datagram_label)
return pd;
return NULL;
}
static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
{
struct fwnet_fragment_info *fi, *n;
list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
kfree(fi);
list_del(&old->pd_link);
dev_kfree_skb_any(old->skb);
kfree(old);
}
static bool fwnet_pd_update(struct fwnet_peer *peer,
struct fwnet_partial_datagram *pd, void *frag_buf,
unsigned frag_off, unsigned frag_len)
{
if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
return false;
memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
/*
* Move list entry to beginning of list so that oldest partial
* datagrams percolate to the end of the list
*/
list_move_tail(&pd->pd_link, &peer->pd_list);
return true;
}
static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
{
struct fwnet_fragment_info *fi;
fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
return fi->len == pd->datagram_size;
}
/* caller must hold dev->lock */
static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
u64 guid)
{
struct fwnet_peer *peer;
list_for_each_entry(peer, &dev->peer_list, peer_link)
if (peer->guid == guid)
return peer;
return NULL;
}
/* caller must hold dev->lock */
static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
int node_id, int generation)
{
struct fwnet_peer *peer;
list_for_each_entry(peer, &dev->peer_list, peer_link)
if (peer->node_id == node_id &&
peer->generation == generation)
return peer;
return NULL;
}
/* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
{
max_rec = min(max_rec, speed + 8);
max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
}
static int fwnet_finish_incoming_packet(struct net_device *net,
struct sk_buff *skb, u16 source_node_id,
bool is_broadcast, u16 ether_type)
{
struct fwnet_device *dev;
static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
int status;
__be64 guid;
dev = netdev_priv(net);
/* Write metadata, and then pass to the receive level */
skb->dev = net;
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
/*
* Parse the encapsulation header. This actually does the job of
* converting to an ethernet frame header, as well as arp
* conversion if needed. ARP conversion is easier in this
* direction, since we are using ethernet as our backend.
*/
/*
* If this is an ARP packet, convert it. First, we want to make
* use of some of the fields, since they tell us a little bit
* about the sending machine.
*/
if (ether_type == ETH_P_ARP) {
struct rfc2734_arp *arp1394;
struct arphdr *arp;
unsigned char *arp_ptr;
u64 fifo_addr;
u64 peer_guid;
unsigned sspd;
u16 max_payload;
struct fwnet_peer *peer;
unsigned long flags;
arp1394 = (struct rfc2734_arp *)skb->data;
arp = (struct arphdr *)skb->data;
arp_ptr = (unsigned char *)(arp + 1);
peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
| get_unaligned_be32(&arp1394->fifo_lo);
sspd = arp1394->sspd;
/* Sanity check. OS X 10.3 PPC reportedly sends 131. */
if (sspd > SCODE_3200) {
fw_notify("sspd %x out of range\n", sspd);
sspd = SCODE_3200;
}
max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
spin_lock_irqsave(&dev->lock, flags);
peer = fwnet_peer_find_by_guid(dev, peer_guid);
if (peer) {
peer->fifo = fifo_addr;
if (peer->speed > sspd)
peer->speed = sspd;
if (peer->max_payload > max_payload)
peer->max_payload = max_payload;
peer->ip = arp1394->sip;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (!peer) {
fw_notify("No peer for ARP packet from %016llx\n",
(unsigned long long)peer_guid);
goto no_peer;
}
/*
* Now that we're done with the 1394 specific stuff, we'll
* need to alter some of the data. Believe it or not, all
* that needs to be done is sender_IP_address needs to be
* moved, the destination hardware address get stuffed
* in and the hardware address length set to 8.
*
* IMPORTANT: The code below overwrites 1394 specific data
* needed above so keep the munging of the data for the
* higher level IP stack last.
*/
arp->ar_hln = 8;
/* skip over sender unique id */
arp_ptr += arp->ar_hln;
/* move sender IP addr */
put_unaligned(arp1394->sip, (u32 *)arp_ptr);
/* skip over sender IP addr */
arp_ptr += arp->ar_pln;
if (arp->ar_op == htons(ARPOP_REQUEST))
memset(arp_ptr, 0, sizeof(u64));
else
memcpy(arp_ptr, net->dev_addr, sizeof(u64));
}
/* Now add the ethernet header. */
guid = cpu_to_be64(dev->card->guid);
if (dev_hard_header(skb, net, ether_type,
is_broadcast ? &broadcast_hw : &guid,
NULL, skb->len) >= 0) {
struct fwnet_header *eth;
u16 *rawp;
__be16 protocol;
skb_reset_mac_header(skb);
skb_pull(skb, sizeof(*eth));
eth = (struct fwnet_header *)skb_mac_header(skb);
if (*eth->h_dest & 1) {
if (memcmp(eth->h_dest, net->broadcast,
net->addr_len) == 0)
skb->pkt_type = PACKET_BROADCAST;
#if 0
else
skb->pkt_type = PACKET_MULTICAST;
#endif
} else {
if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
skb->pkt_type = PACKET_OTHERHOST;
}
if (ntohs(eth->h_proto) >= 1536) {
protocol = eth->h_proto;
} else {
rawp = (u16 *)skb->data;
if (*rawp == 0xffff)
protocol = htons(ETH_P_802_3);
else
protocol = htons(ETH_P_802_2);
}
skb->protocol = protocol;
}
status = netif_rx(skb);
if (status == NET_RX_DROP) {
net->stats.rx_errors++;
net->stats.rx_dropped++;
} else {
net->stats.rx_packets++;
net->stats.rx_bytes += skb->len;
}
return 0;
no_peer:
net->stats.rx_errors++;
net->stats.rx_dropped++;
dev_kfree_skb_any(skb);
return -ENOENT;
}
static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
int source_node_id, int generation,
bool is_broadcast)
{
struct sk_buff *skb;
struct net_device *net = dev->netdev;
struct rfc2734_header hdr;
unsigned lf;
unsigned long flags;
struct fwnet_peer *peer;
struct fwnet_partial_datagram *pd;
int fg_off;
int dg_size;
u16 datagram_label;
int retval;
u16 ether_type;
hdr.w0 = be32_to_cpu(buf[0]);
lf = fwnet_get_hdr_lf(&hdr);
if (lf == RFC2374_HDR_UNFRAG) {
/*
* An unfragmented datagram has been received by the ieee1394
* bus. Build an skbuff around it so we can pass it to the
* high level network layer.
*/
ether_type = fwnet_get_hdr_ether_type(&hdr);
buf++;
len -= RFC2374_UNFRAG_HDR_SIZE;
skb = dev_alloc_skb(len + net->hard_header_len + 15);
if (unlikely(!skb)) {
fw_error("out of memory\n");
net->stats.rx_dropped++;
return -ENOMEM;
}
skb_reserve(skb, (net->hard_header_len + 15) & ~15);
memcpy(skb_put(skb, len), buf, len);
return fwnet_finish_incoming_packet(net, skb, source_node_id,
is_broadcast, ether_type);
}
/* A datagram fragment has been received, now the fun begins. */
hdr.w1 = ntohl(buf[1]);
buf += 2;
len -= RFC2374_FRAG_HDR_SIZE;
if (lf == RFC2374_HDR_FIRSTFRAG) {
ether_type = fwnet_get_hdr_ether_type(&hdr);
fg_off = 0;
} else {
ether_type = 0;
fg_off = fwnet_get_hdr_fg_off(&hdr);
}
datagram_label = fwnet_get_hdr_dgl(&hdr);
dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
spin_lock_irqsave(&dev->lock, flags);
peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
if (!peer) {
retval = -ENOENT;
goto fail;
}
pd = fwnet_pd_find(peer, datagram_label);
if (pd == NULL) {
while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
/* remove the oldest */
fwnet_pd_delete(list_first_entry(&peer->pd_list,
struct fwnet_partial_datagram, pd_link));
peer->pdg_size--;
}
pd = fwnet_pd_new(net, peer, datagram_label,
dg_size, buf, fg_off, len);
if (pd == NULL) {
retval = -ENOMEM;
goto fail;
}
peer->pdg_size++;
} else {
if (fwnet_frag_overlap(pd, fg_off, len) ||
pd->datagram_size != dg_size) {
/*
* Differing datagram sizes or overlapping fragments,
* discard old datagram and start a new one.
*/
fwnet_pd_delete(pd);
pd = fwnet_pd_new(net, peer, datagram_label,
dg_size, buf, fg_off, len);
if (pd == NULL) {
peer->pdg_size--;
retval = -ENOMEM;
goto fail;
}
} else {
if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
/*
* Couldn't save off fragment anyway
* so might as well obliterate the
* datagram now.
*/
fwnet_pd_delete(pd);
peer->pdg_size--;
retval = -ENOMEM;
goto fail;
}
}
} /* new datagram or add to existing one */
if (lf == RFC2374_HDR_FIRSTFRAG)
pd->ether_type = ether_type;
if (fwnet_pd_is_complete(pd)) {
ether_type = pd->ether_type;
peer->pdg_size--;
skb = skb_get(pd->skb);
fwnet_pd_delete(pd);
spin_unlock_irqrestore(&dev->lock, flags);
return fwnet_finish_incoming_packet(net, skb, source_node_id,
false, ether_type);
}
/*
* Datagram is not complete, we're done for the
* moment.
*/
retval = 0;
fail:
spin_unlock_irqrestore(&dev->lock, flags);
return retval;
}
static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
int tcode, int destination, int source, int generation,
unsigned long long offset, void *payload, size_t length,
void *callback_data)
{
struct fwnet_device *dev = callback_data;
int rcode;
if (destination == IEEE1394_ALL_NODES) {
kfree(r);
return;
}
if (offset != dev->handler.offset)
rcode = RCODE_ADDRESS_ERROR;
else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
rcode = RCODE_TYPE_ERROR;
else if (fwnet_incoming_packet(dev, payload, length,
source, generation, false) != 0) {
fw_error("Incoming packet failure\n");
rcode = RCODE_CONFLICT_ERROR;
} else
rcode = RCODE_COMPLETE;
fw_send_response(card, r, rcode);
}
static void fwnet_receive_broadcast(struct fw_iso_context *context,
u32 cycle, size_t header_length, void *header, void *data)
{
struct fwnet_device *dev;
struct fw_iso_packet packet;
struct fw_card *card;
__be16 *hdr_ptr;
__be32 *buf_ptr;
int retval;
u32 length;
u16 source_node_id;
u32 specifier_id;
u32 ver;
unsigned long offset;
unsigned long flags;
dev = data;
card = dev->card;
hdr_ptr = header;
length = be16_to_cpup(hdr_ptr);
spin_lock_irqsave(&dev->lock, flags);
offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
dev->broadcast_rcv_next_ptr = 0;
spin_unlock_irqrestore(&dev->lock, flags);
specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
buf_ptr += 2;
length -= IEEE1394_GASP_HDR_SIZE;
fwnet_incoming_packet(dev, buf_ptr, length,
source_node_id, -1, true);
}
packet.payload_length = dev->rcv_buffer_size;
packet.interrupt = 1;
packet.skip = 0;
packet.tag = 3;
packet.sy = 0;
packet.header_length = IEEE1394_GASP_HDR_SIZE;
spin_lock_irqsave(&dev->lock, flags);
retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
&dev->broadcast_rcv_buffer, offset);
spin_unlock_irqrestore(&dev->lock, flags);
if (retval >= 0)
fw_iso_context_queue_flush(dev->broadcast_rcv_context);
else
fw_error("requeue failed\n");
}
static struct kmem_cache *fwnet_packet_task_cache;
static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
{
dev_kfree_skb_any(ptask->skb);
kmem_cache_free(fwnet_packet_task_cache, ptask);
}
/* Caller must hold dev->lock. */
static void dec_queued_datagrams(struct fwnet_device *dev)
{
if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
netif_wake_queue(dev->netdev);
}
static int fwnet_send_packet(struct fwnet_packet_task *ptask);
static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
{
struct fwnet_device *dev = ptask->dev;
struct sk_buff *skb = ptask->skb;
unsigned long flags;
bool free;
spin_lock_irqsave(&dev->lock, flags);
ptask->outstanding_pkts--;
/* Check whether we or the networking TX soft-IRQ is last user. */
free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
if (free)
dec_queued_datagrams(dev);
if (ptask->outstanding_pkts == 0) {
dev->netdev->stats.tx_packets++;
dev->netdev->stats.tx_bytes += skb->len;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (ptask->outstanding_pkts > 0) {
u16 dg_size;
u16 fg_off;
u16 datagram_label;
u16 lf;
/* Update the ptask to point to the next fragment and send it */
lf = fwnet_get_hdr_lf(&ptask->hdr);
switch (lf) {
case RFC2374_HDR_LASTFRAG:
case RFC2374_HDR_UNFRAG:
default:
fw_error("Outstanding packet %x lf %x, header %x,%x\n",
ptask->outstanding_pkts, lf, ptask->hdr.w0,
ptask->hdr.w1);
BUG();
case RFC2374_HDR_FIRSTFRAG:
/* Set frag type here for future interior fragments */
dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
break;
case RFC2374_HDR_INTFRAG:
dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
+ ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
break;
}
skb_pull(skb, ptask->max_payload);
if (ptask->outstanding_pkts > 1) {
fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
dg_size, fg_off, datagram_label);
} else {
fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
dg_size, fg_off, datagram_label);
ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
}
fwnet_send_packet(ptask);
}
if (free)
fwnet_free_ptask(ptask);
}
static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
{
struct fwnet_device *dev = ptask->dev;
unsigned long flags;
bool free;
spin_lock_irqsave(&dev->lock, flags);
/* One fragment failed; don't try to send remaining fragments. */
ptask->outstanding_pkts = 0;
/* Check whether we or the networking TX soft-IRQ is last user. */
free = ptask->enqueued;
if (free)
dec_queued_datagrams(dev);
dev->netdev->stats.tx_dropped++;
dev->netdev->stats.tx_errors++;
spin_unlock_irqrestore(&dev->lock, flags);
if (free)
fwnet_free_ptask(ptask);
}
static void fwnet_write_complete(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct fwnet_packet_task *ptask = data;
static unsigned long j;
static int last_rcode, errors_skipped;
if (rcode == RCODE_COMPLETE) {
fwnet_transmit_packet_done(ptask);
} else {
fwnet_transmit_packet_failed(ptask);
if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
fw_error("fwnet_write_complete: "
"failed: %x (skipped %d)\n", rcode, errors_skipped);
errors_skipped = 0;
last_rcode = rcode;
} else
errors_skipped++;
}
}
static int fwnet_send_packet(struct fwnet_packet_task *ptask)
{
struct fwnet_device *dev;
unsigned tx_len;
struct rfc2734_header *bufhdr;
unsigned long flags;
bool free;
dev = ptask->dev;
tx_len = ptask->max_payload;
switch (fwnet_get_hdr_lf(&ptask->hdr)) {
case RFC2374_HDR_UNFRAG:
bufhdr = (struct rfc2734_header *)
skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
break;
case RFC2374_HDR_FIRSTFRAG:
case RFC2374_HDR_INTFRAG:
case RFC2374_HDR_LASTFRAG:
bufhdr = (struct rfc2734_header *)
skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
break;
default:
BUG();
}
if (ptask->dest_node == IEEE1394_ALL_NODES) {
u8 *p;
int generation;
int node_id;
/* ptask->generation may not have been set yet */
generation = dev->card->generation;
smp_rmb();
node_id = dev->card->node_id;
p = skb_push(ptask->skb, 8);
put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
| RFC2734_SW_VERSION, &p[4]);
/* We should not transmit if broadcast_channel.valid == 0. */
fw_send_request(dev->card, &ptask->transaction,
TCODE_STREAM_DATA,
fw_stream_packet_destination_id(3,
IEEE1394_BROADCAST_CHANNEL, 0),
generation, SCODE_100, 0ULL, ptask->skb->data,
tx_len + 8, fwnet_write_complete, ptask);
spin_lock_irqsave(&dev->lock, flags);
/* If the AT tasklet already ran, we may be last user. */
free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
if (!free)
ptask->enqueued = true;
else
dec_queued_datagrams(dev);
spin_unlock_irqrestore(&dev->lock, flags);
goto out;
}
fw_send_request(dev->card, &ptask->transaction,
TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
ptask->generation, ptask->speed, ptask->fifo_addr,
ptask->skb->data, tx_len, fwnet_write_complete, ptask);
spin_lock_irqsave(&dev->lock, flags);
/* If the AT tasklet already ran, we may be last user. */
free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
if (!free)
ptask->enqueued = true;
else
dec_queued_datagrams(dev);
spin_unlock_irqrestore(&dev->lock, flags);
dev->netdev->trans_start = jiffies;
out:
if (free)
fwnet_free_ptask(ptask);
return 0;
}
static int fwnet_broadcast_start(struct fwnet_device *dev)
{
struct fw_iso_context *context;
int retval;
unsigned num_packets;
unsigned max_receive;
struct fw_iso_packet packet;
unsigned long offset;
unsigned u;
if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
dev->handler.length = 4096;
dev->handler.address_callback = fwnet_receive_packet;
dev->handler.callback_data = dev;
retval = fw_core_add_address_handler(&dev->handler,
&fw_high_memory_region);
if (retval < 0)
goto failed_initial;
dev->local_fifo = dev->handler.offset;
}
max_receive = 1U << (dev->card->max_receive + 1);
num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
if (!dev->broadcast_rcv_context) {
void **ptrptr;
context = fw_iso_context_create(dev->card,
FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
if (IS_ERR(context)) {
retval = PTR_ERR(context);
goto failed_context_create;
}
retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
if (retval < 0)
goto failed_buffer_init;
ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
if (!ptrptr) {
retval = -ENOMEM;
goto failed_ptrs_alloc;
}
dev->broadcast_rcv_buffer_ptrs = ptrptr;
for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
void *ptr;
unsigned v;
ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
*ptrptr++ = (void *)
((char *)ptr + v * max_receive);
}
dev->broadcast_rcv_context = context;
} else {
context = dev->broadcast_rcv_context;
}
packet.payload_length = max_receive;
packet.interrupt = 1;
packet.skip = 0;
packet.tag = 3;
packet.sy = 0;
packet.header_length = IEEE1394_GASP_HDR_SIZE;
offset = 0;
for (u = 0; u < num_packets; u++) {
retval = fw_iso_context_queue(context, &packet,
&dev->broadcast_rcv_buffer, offset);
if (retval < 0)
goto failed_rcv_queue;
offset += max_receive;
}
dev->num_broadcast_rcv_ptrs = num_packets;
dev->rcv_buffer_size = max_receive;
dev->broadcast_rcv_next_ptr = 0U;
retval = fw_iso_context_start(context, -1, 0,
FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
if (retval < 0)
goto failed_rcv_queue;
/* FIXME: adjust it according to the min. speed of all known peers? */
dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
dev->broadcast_state = FWNET_BROADCAST_RUNNING;
return 0;
failed_rcv_queue:
kfree(dev->broadcast_rcv_buffer_ptrs);
dev->broadcast_rcv_buffer_ptrs = NULL;
failed_ptrs_alloc:
fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
failed_buffer_init:
fw_iso_context_destroy(context);
dev->broadcast_rcv_context = NULL;
failed_context_create:
fw_core_remove_address_handler(&dev->handler);
failed_initial:
dev->local_fifo = FWNET_NO_FIFO_ADDR;
return retval;
}
static void set_carrier_state(struct fwnet_device *dev)
{
if (dev->peer_count > 1)
netif_carrier_on(dev->netdev);
else
netif_carrier_off(dev->netdev);
}
/* ifup */
static int fwnet_open(struct net_device *net)
{
struct fwnet_device *dev = netdev_priv(net);
int ret;
if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
ret = fwnet_broadcast_start(dev);
if (ret)
return ret;
}
netif_start_queue(net);
spin_lock_irq(&dev->lock);
set_carrier_state(dev);
spin_unlock_irq(&dev->lock);
return 0;
}
/* ifdown */
static int fwnet_stop(struct net_device *net)
{
netif_stop_queue(net);
/* Deallocate iso context for use by other applications? */
return 0;
}
static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
{
struct fwnet_header hdr_buf;
struct fwnet_device *dev = netdev_priv(net);
__be16 proto;
u16 dest_node;
unsigned max_payload;
u16 dg_size;
u16 *datagram_label_ptr;
struct fwnet_packet_task *ptask;
struct fwnet_peer *peer;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
/* Can this happen? */
if (netif_queue_stopped(dev->netdev)) {
spin_unlock_irqrestore(&dev->lock, flags);
return NETDEV_TX_BUSY;
}
ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
if (ptask == NULL)
goto fail;
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
goto fail;
/*
* Make a copy of the driver-specific header.
* We might need to rebuild the header on tx failure.
*/
memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
skb_pull(skb, sizeof(hdr_buf));
proto = hdr_buf.h_proto;
dg_size = skb->len;
/*
* Set the transmission type for the packet. ARP packets and IP
* broadcast packets are sent via GASP.
*/
if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
|| proto == htons(ETH_P_ARP)
|| (proto == htons(ETH_P_IP)
&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
max_payload = dev->broadcast_xmt_max_payload;
datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
ptask->generation = 0;
ptask->dest_node = IEEE1394_ALL_NODES;
ptask->speed = SCODE_100;
} else {
__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
u8 generation;
peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
goto fail;
generation = peer->generation;
dest_node = peer->node_id;
max_payload = peer->max_payload;
datagram_label_ptr = &peer->datagram_label;
ptask->fifo_addr = peer->fifo;
ptask->generation = generation;
ptask->dest_node = dest_node;
ptask->speed = peer->speed;
}
/* If this is an ARP packet, convert it */
if (proto == htons(ETH_P_ARP)) {
struct arphdr *arp = (struct arphdr *)skb->data;
unsigned char *arp_ptr = (unsigned char *)(arp + 1);
struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
__be32 ipaddr;
ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
arp1394->max_rec = dev->card->max_receive;
arp1394->sspd = dev->card->link_speed;
put_unaligned_be16(dev->local_fifo >> 32,
&arp1394->fifo_hi);
put_unaligned_be32(dev->local_fifo & 0xffffffff,
&arp1394->fifo_lo);
put_unaligned(ipaddr, &arp1394->sip);
}
ptask->hdr.w0 = 0;
ptask->hdr.w1 = 0;
ptask->skb = skb;
ptask->dev = dev;
/* Does it all fit in one packet? */
if (dg_size <= max_payload) {
fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
ptask->outstanding_pkts = 1;
max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
} else {
u16 datagram_label;
max_payload -= RFC2374_FRAG_OVERHEAD;
datagram_label = (*datagram_label_ptr)++;
fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
datagram_label);
ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
max_payload += RFC2374_FRAG_HDR_SIZE;
}
if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
netif_stop_queue(dev->netdev);
spin_unlock_irqrestore(&dev->lock, flags);
ptask->max_payload = max_payload;
ptask->enqueued = 0;
fwnet_send_packet(ptask);
return NETDEV_TX_OK;
fail:
spin_unlock_irqrestore(&dev->lock, flags);
if (ptask)
kmem_cache_free(fwnet_packet_task_cache, ptask);
if (skb != NULL)
dev_kfree_skb(skb);
net->stats.tx_dropped++;
net->stats.tx_errors++;
/*
* FIXME: According to a patch from 2003-02-26, "returning non-zero
* causes serious problems" here, allegedly. Before that patch,
* -ERRNO was returned which is not appropriate under Linux 2.6.
* Perhaps more needs to be done? Stop the queue in serious
* conditions and restart it elsewhere?
*/
return NETDEV_TX_OK;
}
static int fwnet_change_mtu(struct net_device *net, int new_mtu)
{
if (new_mtu < 68)
return -EINVAL;
net->mtu = new_mtu;
return 0;
}
static const struct ethtool_ops fwnet_ethtool_ops = {
.get_link = ethtool_op_get_link,
};
static const struct net_device_ops fwnet_netdev_ops = {
.ndo_open = fwnet_open,
.ndo_stop = fwnet_stop,
.ndo_start_xmit = fwnet_tx,
.ndo_change_mtu = fwnet_change_mtu,
};
static void fwnet_init_dev(struct net_device *net)
{
net->header_ops = &fwnet_header_ops;
net->netdev_ops = &fwnet_netdev_ops;
net->watchdog_timeo = 2 * HZ;
net->flags = IFF_BROADCAST | IFF_MULTICAST;
net->features = NETIF_F_HIGHDMA;
net->addr_len = FWNET_ALEN;
net->hard_header_len = FWNET_HLEN;
net->type = ARPHRD_IEEE1394;
net->tx_queue_len = FWNET_TX_QUEUE_LEN;
net->ethtool_ops = &fwnet_ethtool_ops;
}
/* caller must hold fwnet_device_mutex */
static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
{
struct fwnet_device *dev;
list_for_each_entry(dev, &fwnet_device_list, dev_link)
if (dev->card == card)
return dev;
return NULL;
}
static int fwnet_add_peer(struct fwnet_device *dev,
struct fw_unit *unit, struct fw_device *device)
{
struct fwnet_peer *peer;
peer = kmalloc(sizeof(*peer), GFP_KERNEL);
if (!peer)
return -ENOMEM;
dev_set_drvdata(&unit->device, peer);
peer->dev = dev;
peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
peer->fifo = FWNET_NO_FIFO_ADDR;
peer->ip = 0;
INIT_LIST_HEAD(&peer->pd_list);
peer->pdg_size = 0;
peer->datagram_label = 0;
peer->speed = device->max_speed;
peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
peer->generation = device->generation;
smp_rmb();
peer->node_id = device->node_id;
spin_lock_irq(&dev->lock);
list_add_tail(&peer->peer_link, &dev->peer_list);
dev->peer_count++;
set_carrier_state(dev);
spin_unlock_irq(&dev->lock);
return 0;
}
static int fwnet_probe(struct device *_dev)
{
struct fw_unit *unit = fw_unit(_dev);
struct fw_device *device = fw_parent_device(unit);
struct fw_card *card = device->card;
struct net_device *net;
bool allocated_netdev = false;
struct fwnet_device *dev;
unsigned max_mtu;
int ret;
mutex_lock(&fwnet_device_mutex);
dev = fwnet_dev_find(card);
if (dev) {
net = dev->netdev;
goto have_dev;
}
net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
if (net == NULL) {
ret = -ENOMEM;
goto out;
}
allocated_netdev = true;
SET_NETDEV_DEV(net, card->device);
dev = netdev_priv(net);
spin_lock_init(&dev->lock);
dev->broadcast_state = FWNET_BROADCAST_ERROR;
dev->broadcast_rcv_context = NULL;
dev->broadcast_xmt_max_payload = 0;
dev->broadcast_xmt_datagramlabel = 0;
dev->local_fifo = FWNET_NO_FIFO_ADDR;
dev->queued_datagrams = 0;
INIT_LIST_HEAD(&dev->peer_list);
dev->card = card;
dev->netdev = net;
/*
* Use the RFC 2734 default 1500 octets or the maximum payload
* as initial MTU
*/
max_mtu = (1 << (card->max_receive + 1))
- sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
net->mtu = min(1500U, max_mtu);
/* Set our hardware address while we're at it */
put_unaligned_be64(card->guid, net->dev_addr);
put_unaligned_be64(~0ULL, net->broadcast);
ret = register_netdev(net);
if (ret) {
fw_error("Cannot register the driver\n");
goto out;
}
list_add_tail(&dev->dev_link, &fwnet_device_list);
fw_notify("%s: IPv4 over FireWire on device %016llx\n",
net->name, (unsigned long long)card->guid);
have_dev:
ret = fwnet_add_peer(dev, unit, device);
if (ret && allocated_netdev) {
unregister_netdev(net);
list_del(&dev->dev_link);
}
out:
if (ret && allocated_netdev)
free_netdev(net);
mutex_unlock(&fwnet_device_mutex);
return ret;
}
static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
{
struct fwnet_partial_datagram *pd, *pd_next;
spin_lock_irq(&dev->lock);
list_del(&peer->peer_link);
dev->peer_count--;
set_carrier_state(dev);
spin_unlock_irq(&dev->lock);
list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
fwnet_pd_delete(pd);
kfree(peer);
}
static int fwnet_remove(struct device *_dev)
{
struct fwnet_peer *peer = dev_get_drvdata(_dev);
struct fwnet_device *dev = peer->dev;
struct net_device *net;
int i;
mutex_lock(&fwnet_device_mutex);
net = dev->netdev;
if (net && peer->ip)
arp_invalidate(net, peer->ip);
fwnet_remove_peer(peer, dev);
if (list_empty(&dev->peer_list)) {
unregister_netdev(net);
if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
fw_core_remove_address_handler(&dev->handler);
if (dev->broadcast_rcv_context) {
fw_iso_context_stop(dev->broadcast_rcv_context);
fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
dev->card);
fw_iso_context_destroy(dev->broadcast_rcv_context);
}
for (i = 0; dev->queued_datagrams && i < 5; i++)
ssleep(1);
WARN_ON(dev->queued_datagrams);
list_del(&dev->dev_link);
free_netdev(net);
}
mutex_unlock(&fwnet_device_mutex);
return 0;
}
/*
* FIXME abort partially sent fragmented datagrams,
* discard partially received fragmented datagrams
*/
static void fwnet_update(struct fw_unit *unit)
{
struct fw_device *device = fw_parent_device(unit);
struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
int generation;
generation = device->generation;
spin_lock_irq(&peer->dev->lock);
peer->node_id = device->node_id;
peer->generation = generation;
spin_unlock_irq(&peer->dev->lock);
}
static const struct ieee1394_device_id fwnet_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.specifier_id = IANA_SPECIFIER_ID,
.version = RFC2734_SW_VERSION,
},
{ }
};
static struct fw_driver fwnet_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "net",
.bus = &fw_bus_type,
.probe = fwnet_probe,
.remove = fwnet_remove,
},
.update = fwnet_update,
.id_table = fwnet_id_table,
};
static const u32 rfc2374_unit_directory_data[] = {
0x00040000, /* directory_length */
0x1200005e, /* unit_specifier_id: IANA */
0x81000003, /* textual descriptor offset */
0x13000001, /* unit_sw_version: RFC 2734 */
0x81000005, /* textual descriptor offset */
0x00030000, /* descriptor_length */
0x00000000, /* text */
0x00000000, /* minimal ASCII, en */
0x49414e41, /* I A N A */
0x00030000, /* descriptor_length */
0x00000000, /* text */
0x00000000, /* minimal ASCII, en */
0x49507634, /* I P v 4 */
};
static struct fw_descriptor rfc2374_unit_directory = {
.length = ARRAY_SIZE(rfc2374_unit_directory_data),
.key = (CSR_DIRECTORY | CSR_UNIT) << 24,
.data = rfc2374_unit_directory_data
};
static int __init fwnet_init(void)
{
int err;
err = fw_core_add_descriptor(&rfc2374_unit_directory);
if (err)
return err;
fwnet_packet_task_cache = kmem_cache_create("packet_task",
sizeof(struct fwnet_packet_task), 0, 0, NULL);
if (!fwnet_packet_task_cache) {
err = -ENOMEM;
goto out;
}
err = driver_register(&fwnet_driver.driver);
if (!err)
return 0;
kmem_cache_destroy(fwnet_packet_task_cache);
out:
fw_core_remove_descriptor(&rfc2374_unit_directory);
return err;
}
module_init(fwnet_init);
static void __exit fwnet_cleanup(void)
{
driver_unregister(&fwnet_driver.driver);
kmem_cache_destroy(fwnet_packet_task_cache);
fw_core_remove_descriptor(&rfc2374_unit_directory);
}
module_exit(fwnet_cleanup);
MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);