linux_dsm_epyc7002/net/sunrpc/xprtrdma/transport.c

903 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (c) 2014-2017 Oracle. All rights reserved.
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* transport.c
*
* This file contains the top-level implementation of an RPC RDMA
* transport.
*
* Naming convention: functions beginning with xprt_ are part of the
* transport switch. All others are RPC RDMA internal.
*/
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/sunrpc/addr.h>
#include <linux/sunrpc/svc_rdma.h>
#include "xprt_rdma.h"
#include <trace/events/rpcrdma.h>
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
/*
* tunables
*/
static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRWR;
int xprt_rdma_pad_optimize;
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
static unsigned int min_inline_size = RPCRDMA_MIN_INLINE;
static unsigned int max_inline_size = RPCRDMA_MAX_INLINE;
static unsigned int zero;
static unsigned int max_padding = PAGE_SIZE;
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
static unsigned int max_memreg = RPCRDMA_LAST - 1;
static unsigned int dummy;
static struct ctl_table_header *sunrpc_table_header;
static struct ctl_table xr_tunables_table[] = {
{
.procname = "rdma_slot_table_entries",
.data = &xprt_rdma_slot_table_entries,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_slot_table_size,
.extra2 = &max_slot_table_size
},
{
.procname = "rdma_max_inline_read",
.data = &xprt_rdma_max_inline_read,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_inline_size,
.extra2 = &max_inline_size,
},
{
.procname = "rdma_max_inline_write",
.data = &xprt_rdma_max_inline_write,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_inline_size,
.extra2 = &max_inline_size,
},
{
.procname = "rdma_inline_write_padding",
.data = &dummy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &zero,
.extra2 = &max_padding,
},
{
.procname = "rdma_memreg_strategy",
.data = &xprt_rdma_memreg_strategy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_memreg,
.extra2 = &max_memreg,
},
{
.procname = "rdma_pad_optimize",
.data = &xprt_rdma_pad_optimize,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{ },
};
static struct ctl_table sunrpc_table[] = {
{
.procname = "sunrpc",
.mode = 0555,
.child = xr_tunables_table
},
{ },
};
#endif
static const struct rpc_xprt_ops xprt_rdma_procs;
static void
xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
{
struct sockaddr_in *sin = (struct sockaddr_in *)sap;
char buf[20];
snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
}
static void
xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
char buf[40];
snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
}
void
xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
{
char buf[128];
switch (sap->sa_family) {
case AF_INET:
xprt_rdma_format_addresses4(xprt, sap);
break;
case AF_INET6:
xprt_rdma_format_addresses6(xprt, sap);
break;
default:
pr_err("rpcrdma: Unrecognized address family\n");
return;
}
(void)rpc_ntop(sap, buf, sizeof(buf));
xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
}
void
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
{
unsigned int i;
for (i = 0; i < RPC_DISPLAY_MAX; i++)
switch (i) {
case RPC_DISPLAY_PROTO:
case RPC_DISPLAY_NETID:
continue;
default:
kfree(xprt->address_strings[i]);
}
}
/**
* xprt_rdma_connect_worker - establish connection in the background
* @work: worker thread context
*
* Requester holds the xprt's send lock to prevent activity on this
* transport while a fresh connection is being established. RPC tasks
* sleep on the xprt's pending queue waiting for connect to complete.
*/
static void
xprt_rdma_connect_worker(struct work_struct *work)
{
struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
rx_connect_worker.work);
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
int rc;
rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
xprt_clear_connecting(xprt);
if (r_xprt->rx_ep.rep_connected > 0) {
if (!xprt_test_and_set_connected(xprt)) {
xprt->stat.connect_count++;
xprt->stat.connect_time += (long)jiffies -
xprt->stat.connect_start;
xprt_wake_pending_tasks(xprt, -EAGAIN);
}
} else {
if (xprt_test_and_clear_connected(xprt))
xprt_wake_pending_tasks(xprt, rc);
}
}
/**
* xprt_rdma_inject_disconnect - inject a connection fault
* @xprt: transport context
*
* If @xprt is connected, disconnect it to simulate spurious connection
* loss.
*/
static void
xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
trace_xprtrdma_inject_dsc(r_xprt);
rdma_disconnect(r_xprt->rx_ia.ri_id);
}
/**
* xprt_rdma_destroy - Full tear down of transport
* @xprt: doomed transport context
*
* Caller guarantees there will be no more calls to us with
* this @xprt.
*/
static void
xprt_rdma_destroy(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
trace_xprtrdma_destroy(r_xprt);
cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
rpcrdma_buffer_destroy(&r_xprt->rx_buf);
rpcrdma_ia_close(&r_xprt->rx_ia);
xprt_rdma_free_addresses(xprt);
xprt_free(xprt);
module_put(THIS_MODULE);
}
static const struct rpc_timeout xprt_rdma_default_timeout = {
.to_initval = 60 * HZ,
.to_maxval = 60 * HZ,
};
/**
* xprt_setup_rdma - Set up transport to use RDMA
*
* @args: rpc transport arguments
*/
static struct rpc_xprt *
xprt_setup_rdma(struct xprt_create *args)
{
struct rpcrdma_create_data_internal cdata;
struct rpc_xprt *xprt;
struct rpcrdma_xprt *new_xprt;
struct rpcrdma_ep *new_ep;
struct sockaddr *sap;
int rc;
if (args->addrlen > sizeof(xprt->addr)) {
dprintk("RPC: %s: address too large\n", __func__);
return ERR_PTR(-EBADF);
}
xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), 0, 0);
if (xprt == NULL) {
dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
__func__);
return ERR_PTR(-ENOMEM);
}
/* 60 second timeout, no retries */
xprt->timeout = &xprt_rdma_default_timeout;
xprt->bind_timeout = RPCRDMA_BIND_TO;
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
xprt->resvport = 0; /* privileged port not needed */
xprt->tsh_size = 0; /* RPC-RDMA handles framing */
xprt->ops = &xprt_rdma_procs;
/*
* Set up RDMA-specific connect data.
*/
sap = args->dstaddr;
/* Ensure xprt->addr holds valid server TCP (not RDMA)
* address, for any side protocols which peek at it */
xprt->prot = IPPROTO_TCP;
xprt->addrlen = args->addrlen;
memcpy(&xprt->addr, sap, xprt->addrlen);
if (rpc_get_port(sap))
xprt_set_bound(xprt);
xprt_rdma_format_addresses(xprt, sap);
cdata.max_requests = xprt_rdma_slot_table_entries;
cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
cdata.inline_wsize = xprt_rdma_max_inline_write;
if (cdata.inline_wsize > cdata.wsize)
cdata.inline_wsize = cdata.wsize;
cdata.inline_rsize = xprt_rdma_max_inline_read;
if (cdata.inline_rsize > cdata.rsize)
cdata.inline_rsize = cdata.rsize;
/*
* Create new transport instance, which includes initialized
* o ia
* o endpoint
* o buffers
*/
new_xprt = rpcx_to_rdmax(xprt);
rc = rpcrdma_ia_open(new_xprt);
if (rc)
goto out1;
/*
* initialize and create ep
*/
new_xprt->rx_data = cdata;
new_ep = &new_xprt->rx_ep;
rc = rpcrdma_ep_create(&new_xprt->rx_ep,
&new_xprt->rx_ia, &new_xprt->rx_data);
if (rc)
goto out2;
rc = rpcrdma_buffer_create(new_xprt);
if (rc)
goto out3;
INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
xprt_rdma_connect_worker);
xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
if (xprt->max_payload == 0)
goto out4;
xprt->max_payload <<= PAGE_SHIFT;
dprintk("RPC: %s: transport data payload maximum: %zu bytes\n",
__func__, xprt->max_payload);
if (!try_module_get(THIS_MODULE))
goto out4;
dprintk("RPC: %s: %s:%s\n", __func__,
xprt->address_strings[RPC_DISPLAY_ADDR],
xprt->address_strings[RPC_DISPLAY_PORT]);
trace_xprtrdma_create(new_xprt);
return xprt;
out4:
rpcrdma_buffer_destroy(&new_xprt->rx_buf);
rc = -ENODEV;
out3:
rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
out2:
rpcrdma_ia_close(&new_xprt->rx_ia);
out1:
trace_xprtrdma_destroy(new_xprt);
xprt_rdma_free_addresses(xprt);
xprt_free(xprt);
return ERR_PTR(rc);
}
/**
* xprt_rdma_close - close a transport connection
* @xprt: transport context
*
* Called during transport shutdown, reconnect, or device removal.
* Caller holds @xprt's send lock to prevent activity on this
* transport while the connection is torn down.
*/
void xprt_rdma_close(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_ep *ep = &r_xprt->rx_ep;
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
might_sleep();
dprintk("RPC: %s: closing xprt %p\n", __func__, xprt);
/* Prevent marshaling and sending of new requests */
xprt_clear_connected(xprt);
if (test_and_clear_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags)) {
rpcrdma_ia_remove(ia);
goto out;
}
if (ep->rep_connected == -ENODEV)
return;
if (ep->rep_connected > 0)
xprt->reestablish_timeout = 0;
rpcrdma_ep_disconnect(ep, ia);
/* Prepare @xprt for the next connection by reinitializing
* its credit grant to one (see RFC 8166, Section 3.3.3).
*/
r_xprt->rx_buf.rb_credits = 1;
xprt->cwnd = RPC_CWNDSHIFT;
out:
++xprt->connect_cookie;
xprt_disconnect_done(xprt);
}
/**
* xprt_rdma_set_port - update server port with rpcbind result
* @xprt: controlling RPC transport
* @port: new port value
*
* Transport connect status is unchanged.
*/
static void
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
{
struct sockaddr *sap = (struct sockaddr *)&xprt->addr;
char buf[8];
dprintk("RPC: %s: setting port for xprt %p (%s:%s) to %u\n",
__func__, xprt,
xprt->address_strings[RPC_DISPLAY_ADDR],
xprt->address_strings[RPC_DISPLAY_PORT],
port);
rpc_set_port(sap, port);
kfree(xprt->address_strings[RPC_DISPLAY_PORT]);
snprintf(buf, sizeof(buf), "%u", port);
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]);
snprintf(buf, sizeof(buf), "%4hx", port);
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
}
xprtrdma: Detect unreachable NFS/RDMA servers more reliably Current NFS clients rely on connection loss to determine when to retransmit. In particular, for protocols like NFSv4, clients no longer rely on RPC timeouts to drive retransmission: NFSv4 servers are required to terminate a connection when they need a client to retransmit pending RPCs. When a server is no longer reachable, either because it has crashed or because the network path has broken, the server cannot actively terminate a connection. Thus NFS clients depend on transport-level keepalive to determine when a connection must be replaced and pending RPCs retransmitted. However, RDMA RC connections do not have a native keepalive mechanism. If an NFS/RDMA server crashes after a client has sent RPCs successfully (an RC ACK has been received for all OTW RDMA requests), there is no way for the client to know the connection is moribund. In addition, new RDMA requests are subject to the RPC-over-RDMA credit limit. If the client has consumed all granted credits with NFS traffic, it is not allowed to send another RDMA request until the server replies. Thus it has no way to send a true keepalive when the workload has already consumed all credits with pending RPCs. To address this, forcibly disconnect a transport when an RPC times out. This prevents moribund connections from stopping the detection of failover or other configuration changes on the server. Note that even if the connection is still good, retransmitting any RPC will trigger a disconnect thanks to this logic in xprt_rdma_send_request: /* Must suppress retransmit to maintain credits */ if (req->rl_connect_cookie == xprt->connect_cookie) goto drop_connection; req->rl_connect_cookie = xprt->connect_cookie; Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2017-04-12 00:22:46 +07:00
/**
* xprt_rdma_timer - invoked when an RPC times out
* @xprt: controlling RPC transport
* @task: RPC task that timed out
*
* Invoked when the transport is still connected, but an RPC
* retransmit timeout occurs.
*
* Since RDMA connections don't have a keep-alive, forcibly
* disconnect and retry to connect. This drives full
* detection of the network path, and retransmissions of
* all pending RPCs.
*/
static void
xprt_rdma_timer(struct rpc_xprt *xprt, struct rpc_task *task)
{
xprt_force_disconnect(xprt);
}
/**
* xprt_rdma_connect - try to establish a transport connection
* @xprt: transport state
* @task: RPC scheduler context
*
*/
static void
xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
if (r_xprt->rx_ep.rep_connected != 0) {
/* Reconnect */
schedule_delayed_work(&r_xprt->rx_connect_worker,
xprt->reestablish_timeout);
xprt->reestablish_timeout <<= 1;
if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
} else {
schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
if (!RPC_IS_ASYNC(task))
flush_delayed_work(&r_xprt->rx_connect_worker);
}
}
/**
* xprt_rdma_alloc_slot - allocate an rpc_rqst
* @xprt: controlling RPC transport
* @task: RPC task requesting a fresh rpc_rqst
*
* tk_status values:
* %0 if task->tk_rqstp points to a fresh rpc_rqst
* %-EAGAIN if no rpc_rqst is available; queued on backlog
*/
static void
xprt_rdma_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_req *req;
req = rpcrdma_buffer_get(&r_xprt->rx_buf);
if (!req)
goto out_sleep;
task->tk_rqstp = &req->rl_slot;
task->tk_status = 0;
return;
out_sleep:
rpc_sleep_on(&xprt->backlog, task, NULL);
task->tk_status = -EAGAIN;
}
/**
* xprt_rdma_free_slot - release an rpc_rqst
* @xprt: controlling RPC transport
* @rqst: rpc_rqst to release
*
*/
static void
xprt_rdma_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *rqst)
{
memset(rqst, 0, sizeof(*rqst));
rpcrdma_buffer_put(rpcr_to_rdmar(rqst));
rpc_wake_up_next(&xprt->backlog);
}
xprtrdma: Initialize separate RPC call and reply buffers RPC-over-RDMA needs to separate its RPC call and reply buffers. o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA Send operation using DMA_TO_DEVICE o If the client expects a large RPC reply, it DMA maps rq_rcv_buf as part of a Reply chunk using DMA_FROM_DEVICE The two mappings are for data movement in opposite directions. DMA-API.txt suggests that if these mappings share a DMA cacheline, bad things can happen. This could occur in the final bytes of rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers happen to share a DMA cacheline. On x86_64 the cacheline size is typically 8 bytes, and RPC call messages are usually much smaller than the send buffer, so this hasn't been a noticeable problem. But the DMA cacheline size can be larger on other platforms. Also, often rq_rcv_buf starts most of the way into a page, thus an additional RDMA segment is needed to map and register the end of that buffer. Try to avoid that scenario to reduce the cost of registering and invalidating Reply chunks. Instead of carrying a single regbuf that covers both rq_snd_buf and rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for rq_snd_buf and one regbuf for rq_rcv_buf. Some incidental changes worth noting: - To clear out some spaghetti, refactor xprt_rdma_allocate. - The value stored in rg_size is the same as the value stored in the iov.length field, so eliminate rg_size Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:55:53 +07:00
static bool
rpcrdma_get_sendbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
size_t size, gfp_t flags)
{
struct rpcrdma_regbuf *rb;
if (req->rl_sendbuf && rdmab_length(req->rl_sendbuf) >= size)
return true;
xprtrdma: Use gathered Send for large inline messages An RPC Call message that is sent inline but that has a data payload (ie, one or more items in rq_snd_buf's page list) must be "pulled up:" - call_allocate has to reserve enough RPC Call buffer space to accommodate the data payload - call_transmit has to memcopy the rq_snd_buf's page list and tail into its head iovec before it is sent As the inline threshold is increased beyond its current 1KB default, however, this means data payloads of more than a few KB are copied by the host CPU. For example, if the inline threshold is increased just to 4KB, then NFS WRITE requests up to 4KB would involve a memcpy of the NFS WRITE's payload data into the RPC Call buffer. This is an undesirable amount of participation by the host CPU. The inline threshold may be much larger than 4KB in the future, after negotiation with a peer server. Instead of copying the components of rq_snd_buf into its head iovec, construct a gather list of these components, and send them all in place. The same approach is already used in the Linux server's RPC-over-RDMA reply path. This mechanism also eliminates the need for rpcrdma_tail_pullup, which is used to manage the XDR pad and trailing inline content when a Read list is present. This requires that the pages in rq_snd_buf's page list be DMA-mapped during marshaling, and unmapped when a data-bearing RPC is completed. This is slightly less efficient for very small I/O payloads, but significantly more efficient as data payload size and inline threshold increase past a kilobyte. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:57:24 +07:00
rb = rpcrdma_alloc_regbuf(size, DMA_TO_DEVICE, flags);
xprtrdma: Initialize separate RPC call and reply buffers RPC-over-RDMA needs to separate its RPC call and reply buffers. o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA Send operation using DMA_TO_DEVICE o If the client expects a large RPC reply, it DMA maps rq_rcv_buf as part of a Reply chunk using DMA_FROM_DEVICE The two mappings are for data movement in opposite directions. DMA-API.txt suggests that if these mappings share a DMA cacheline, bad things can happen. This could occur in the final bytes of rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers happen to share a DMA cacheline. On x86_64 the cacheline size is typically 8 bytes, and RPC call messages are usually much smaller than the send buffer, so this hasn't been a noticeable problem. But the DMA cacheline size can be larger on other platforms. Also, often rq_rcv_buf starts most of the way into a page, thus an additional RDMA segment is needed to map and register the end of that buffer. Try to avoid that scenario to reduce the cost of registering and invalidating Reply chunks. Instead of carrying a single regbuf that covers both rq_snd_buf and rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for rq_snd_buf and one regbuf for rq_rcv_buf. Some incidental changes worth noting: - To clear out some spaghetti, refactor xprt_rdma_allocate. - The value stored in rg_size is the same as the value stored in the iov.length field, so eliminate rg_size Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:55:53 +07:00
if (IS_ERR(rb))
return false;
rpcrdma_free_regbuf(req->rl_sendbuf);
xprtrdma: Use gathered Send for large inline messages An RPC Call message that is sent inline but that has a data payload (ie, one or more items in rq_snd_buf's page list) must be "pulled up:" - call_allocate has to reserve enough RPC Call buffer space to accommodate the data payload - call_transmit has to memcopy the rq_snd_buf's page list and tail into its head iovec before it is sent As the inline threshold is increased beyond its current 1KB default, however, this means data payloads of more than a few KB are copied by the host CPU. For example, if the inline threshold is increased just to 4KB, then NFS WRITE requests up to 4KB would involve a memcpy of the NFS WRITE's payload data into the RPC Call buffer. This is an undesirable amount of participation by the host CPU. The inline threshold may be much larger than 4KB in the future, after negotiation with a peer server. Instead of copying the components of rq_snd_buf into its head iovec, construct a gather list of these components, and send them all in place. The same approach is already used in the Linux server's RPC-over-RDMA reply path. This mechanism also eliminates the need for rpcrdma_tail_pullup, which is used to manage the XDR pad and trailing inline content when a Read list is present. This requires that the pages in rq_snd_buf's page list be DMA-mapped during marshaling, and unmapped when a data-bearing RPC is completed. This is slightly less efficient for very small I/O payloads, but significantly more efficient as data payload size and inline threshold increase past a kilobyte. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:57:24 +07:00
r_xprt->rx_stats.hardway_register_count += size;
xprtrdma: Initialize separate RPC call and reply buffers RPC-over-RDMA needs to separate its RPC call and reply buffers. o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA Send operation using DMA_TO_DEVICE o If the client expects a large RPC reply, it DMA maps rq_rcv_buf as part of a Reply chunk using DMA_FROM_DEVICE The two mappings are for data movement in opposite directions. DMA-API.txt suggests that if these mappings share a DMA cacheline, bad things can happen. This could occur in the final bytes of rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers happen to share a DMA cacheline. On x86_64 the cacheline size is typically 8 bytes, and RPC call messages are usually much smaller than the send buffer, so this hasn't been a noticeable problem. But the DMA cacheline size can be larger on other platforms. Also, often rq_rcv_buf starts most of the way into a page, thus an additional RDMA segment is needed to map and register the end of that buffer. Try to avoid that scenario to reduce the cost of registering and invalidating Reply chunks. Instead of carrying a single regbuf that covers both rq_snd_buf and rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for rq_snd_buf and one regbuf for rq_rcv_buf. Some incidental changes worth noting: - To clear out some spaghetti, refactor xprt_rdma_allocate. - The value stored in rg_size is the same as the value stored in the iov.length field, so eliminate rg_size Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:55:53 +07:00
req->rl_sendbuf = rb;
return true;
}
/* The rq_rcv_buf is used only if a Reply chunk is necessary.
* The decision to use a Reply chunk is made later in
* rpcrdma_marshal_req. This buffer is registered at that time.
*
* Otherwise, the associated RPC Reply arrives in a separate
* Receive buffer, arbitrarily chosen by the HCA. The buffer
* allocated here for the RPC Reply is not utilized in that
* case. See rpcrdma_inline_fixup.
*
* A regbuf is used here to remember the buffer size.
*/
static bool
rpcrdma_get_recvbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
size_t size, gfp_t flags)
{
struct rpcrdma_regbuf *rb;
if (req->rl_recvbuf && rdmab_length(req->rl_recvbuf) >= size)
return true;
rb = rpcrdma_alloc_regbuf(size, DMA_NONE, flags);
xprtrdma: Initialize separate RPC call and reply buffers RPC-over-RDMA needs to separate its RPC call and reply buffers. o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA Send operation using DMA_TO_DEVICE o If the client expects a large RPC reply, it DMA maps rq_rcv_buf as part of a Reply chunk using DMA_FROM_DEVICE The two mappings are for data movement in opposite directions. DMA-API.txt suggests that if these mappings share a DMA cacheline, bad things can happen. This could occur in the final bytes of rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers happen to share a DMA cacheline. On x86_64 the cacheline size is typically 8 bytes, and RPC call messages are usually much smaller than the send buffer, so this hasn't been a noticeable problem. But the DMA cacheline size can be larger on other platforms. Also, often rq_rcv_buf starts most of the way into a page, thus an additional RDMA segment is needed to map and register the end of that buffer. Try to avoid that scenario to reduce the cost of registering and invalidating Reply chunks. Instead of carrying a single regbuf that covers both rq_snd_buf and rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for rq_snd_buf and one regbuf for rq_rcv_buf. Some incidental changes worth noting: - To clear out some spaghetti, refactor xprt_rdma_allocate. - The value stored in rg_size is the same as the value stored in the iov.length field, so eliminate rg_size Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:55:53 +07:00
if (IS_ERR(rb))
return false;
rpcrdma_free_regbuf(req->rl_recvbuf);
xprtrdma: Initialize separate RPC call and reply buffers RPC-over-RDMA needs to separate its RPC call and reply buffers. o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA Send operation using DMA_TO_DEVICE o If the client expects a large RPC reply, it DMA maps rq_rcv_buf as part of a Reply chunk using DMA_FROM_DEVICE The two mappings are for data movement in opposite directions. DMA-API.txt suggests that if these mappings share a DMA cacheline, bad things can happen. This could occur in the final bytes of rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers happen to share a DMA cacheline. On x86_64 the cacheline size is typically 8 bytes, and RPC call messages are usually much smaller than the send buffer, so this hasn't been a noticeable problem. But the DMA cacheline size can be larger on other platforms. Also, often rq_rcv_buf starts most of the way into a page, thus an additional RDMA segment is needed to map and register the end of that buffer. Try to avoid that scenario to reduce the cost of registering and invalidating Reply chunks. Instead of carrying a single regbuf that covers both rq_snd_buf and rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for rq_snd_buf and one regbuf for rq_rcv_buf. Some incidental changes worth noting: - To clear out some spaghetti, refactor xprt_rdma_allocate. - The value stored in rg_size is the same as the value stored in the iov.length field, so eliminate rg_size Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:55:53 +07:00
r_xprt->rx_stats.hardway_register_count += size;
req->rl_recvbuf = rb;
return true;
}
/**
* xprt_rdma_allocate - allocate transport resources for an RPC
* @task: RPC task
*
* Return values:
* 0: Success; rq_buffer points to RPC buffer to use
* ENOMEM: Out of memory, call again later
* EIO: A permanent error occurred, do not retry
*/
static int
xprt_rdma_allocate(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
gfp_t flags;
flags = RPCRDMA_DEF_GFP;
if (RPC_IS_SWAPPER(task))
flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
xprtrdma: Initialize separate RPC call and reply buffers RPC-over-RDMA needs to separate its RPC call and reply buffers. o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA Send operation using DMA_TO_DEVICE o If the client expects a large RPC reply, it DMA maps rq_rcv_buf as part of a Reply chunk using DMA_FROM_DEVICE The two mappings are for data movement in opposite directions. DMA-API.txt suggests that if these mappings share a DMA cacheline, bad things can happen. This could occur in the final bytes of rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers happen to share a DMA cacheline. On x86_64 the cacheline size is typically 8 bytes, and RPC call messages are usually much smaller than the send buffer, so this hasn't been a noticeable problem. But the DMA cacheline size can be larger on other platforms. Also, often rq_rcv_buf starts most of the way into a page, thus an additional RDMA segment is needed to map and register the end of that buffer. Try to avoid that scenario to reduce the cost of registering and invalidating Reply chunks. Instead of carrying a single regbuf that covers both rq_snd_buf and rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for rq_snd_buf and one regbuf for rq_rcv_buf. Some incidental changes worth noting: - To clear out some spaghetti, refactor xprt_rdma_allocate. - The value stored in rg_size is the same as the value stored in the iov.length field, so eliminate rg_size Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:55:53 +07:00
if (!rpcrdma_get_sendbuf(r_xprt, req, rqst->rq_callsize, flags))
goto out_fail;
if (!rpcrdma_get_recvbuf(r_xprt, req, rqst->rq_rcvsize, flags))
goto out_fail;
rqst->rq_buffer = req->rl_sendbuf->rg_base;
xprtrdma: Initialize separate RPC call and reply buffers RPC-over-RDMA needs to separate its RPC call and reply buffers. o When an RPC Call is sent, rq_snd_buf is DMA mapped for an RDMA Send operation using DMA_TO_DEVICE o If the client expects a large RPC reply, it DMA maps rq_rcv_buf as part of a Reply chunk using DMA_FROM_DEVICE The two mappings are for data movement in opposite directions. DMA-API.txt suggests that if these mappings share a DMA cacheline, bad things can happen. This could occur in the final bytes of rq_snd_buf and the first bytes of rq_rcv_buf if the two buffers happen to share a DMA cacheline. On x86_64 the cacheline size is typically 8 bytes, and RPC call messages are usually much smaller than the send buffer, so this hasn't been a noticeable problem. But the DMA cacheline size can be larger on other platforms. Also, often rq_rcv_buf starts most of the way into a page, thus an additional RDMA segment is needed to map and register the end of that buffer. Try to avoid that scenario to reduce the cost of registering and invalidating Reply chunks. Instead of carrying a single regbuf that covers both rq_snd_buf and rq_rcv_buf, each struct rpcrdma_req now carries one regbuf for rq_snd_buf and one regbuf for rq_rcv_buf. Some incidental changes worth noting: - To clear out some spaghetti, refactor xprt_rdma_allocate. - The value stored in rg_size is the same as the value stored in the iov.length field, so eliminate rg_size Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2016-09-15 21:55:53 +07:00
rqst->rq_rbuffer = req->rl_recvbuf->rg_base;
trace_xprtrdma_allocate(task, req);
return 0;
xprtrdma: Allocate RPC send buffer separately from struct rpcrdma_req Because internal memory registration is an expensive and synchronous operation, xprtrdma pre-registers send and receive buffers at mount time, and then re-uses them for each RPC. A "hardway" allocation is a memory allocation and registration that replaces a send buffer during the processing of an RPC. Hardway must be done if the RPC send buffer is too small to accommodate an RPC's call and reply headers. For xprtrdma, each RPC send buffer is currently part of struct rpcrdma_req so that xprt_rdma_free(), which is passed nothing but the address of an RPC send buffer, can find its matching struct rpcrdma_req and rpcrdma_rep quickly via container_of / offsetof. That means that hardway currently has to replace a whole rpcrmda_req when it replaces an RPC send buffer. This is often a fairly hefty chunk of contiguous memory due to the size of the rl_segments array and the fact that both the send and receive buffers are part of struct rpcrdma_req. Some obscure re-use of fields in rpcrdma_req is done so that xprt_rdma_free() can detect replaced rpcrdma_req structs, and restore the original. This commit breaks apart the RPC send buffer and struct rpcrdma_req so that increasing the size of the rl_segments array does not change the alignment of each RPC send buffer. (Increasing rl_segments is needed to bump up the maximum r/wsize for NFS/RDMA). This change opens up some interesting possibilities for improving the design of xprt_rdma_allocate(). xprt_rdma_allocate() is now the one place where RPC send buffers are allocated or re-allocated, and they are now always left in place by xprt_rdma_free(). A large re-allocation that includes both the rl_segments array and the RPC send buffer is no longer needed. Send buffer re-allocation becomes quite rare. Good send buffer alignment is guaranteed no matter what the size of the rl_segments array is. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Reviewed-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2015-01-21 23:04:08 +07:00
out_fail:
trace_xprtrdma_allocate(task, NULL);
return -ENOMEM;
}
/**
* xprt_rdma_free - release resources allocated by xprt_rdma_allocate
* @task: RPC task
*
* Caller guarantees rqst->rq_buffer is non-NULL.
*/
static void
xprt_rdma_free(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
if (test_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags))
rpcrdma_release_rqst(r_xprt, req);
trace_xprtrdma_rpc_done(task, req);
}
/**
* xprt_rdma_send_request - marshal and send an RPC request
* @rqst: RPC message in rq_snd_buf
*
* Caller holds the transport's write lock.
*
* Returns:
* %0 if the RPC message has been sent
* %-ENOTCONN if the caller should reconnect and call again
* %-EAGAIN if the caller should call again
* %-ENOBUFS if the caller should call again after a delay
* %-EIO if a permanent error occurred and the request was not
* sent. Do not try to send this message again.
*/
static int
xprt_rdma_send_request(struct rpc_rqst *rqst)
{
struct rpc_xprt *xprt = rqst->rq_xprt;
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int rc = 0;
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
if (unlikely(!rqst->rq_buffer))
return xprt_rdma_bc_send_reply(rqst);
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
if (!xprt_connected(xprt))
return -ENOTCONN;
if (!xprt_request_get_cong(xprt, rqst))
return -EBADSLT;
rc = rpcrdma_marshal_req(r_xprt, rqst);
if (rc < 0)
goto failed_marshal;
/* Must suppress retransmit to maintain credits */
if (rqst->rq_connect_cookie == xprt->connect_cookie)
goto drop_connection;
rqst->rq_xtime = ktime_get();
__set_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
goto drop_connection;
rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
rqst->rq_bytes_sent = 0;
/* An RPC with no reply will throw off credit accounting,
* so drop the connection to reset the credit grant.
*/
if (!rpc_reply_expected(rqst->rq_task))
goto drop_connection;
return 0;
failed_marshal:
if (rc != -ENOTCONN)
return rc;
drop_connection:
xprt_rdma_close(xprt);
return -ENOTCONN;
}
void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
long idle_time = 0;
if (xprt_connected(xprt))
idle_time = (long)(jiffies - xprt->last_used) / HZ;
seq_puts(seq, "\txprt:\trdma ");
seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
0, /* need a local port? */
xprt->stat.bind_count,
xprt->stat.connect_count,
xprt->stat.connect_time / HZ,
idle_time,
xprt->stat.sends,
xprt->stat.recvs,
xprt->stat.bad_xids,
xprt->stat.req_u,
xprt->stat.bklog_u);
seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu ",
r_xprt->rx_stats.read_chunk_count,
r_xprt->rx_stats.write_chunk_count,
r_xprt->rx_stats.reply_chunk_count,
r_xprt->rx_stats.total_rdma_request,
r_xprt->rx_stats.total_rdma_reply,
r_xprt->rx_stats.pullup_copy_count,
r_xprt->rx_stats.fixup_copy_count,
r_xprt->rx_stats.hardway_register_count,
r_xprt->rx_stats.failed_marshal_count,
r_xprt->rx_stats.bad_reply_count,
r_xprt->rx_stats.nomsg_call_count);
seq_printf(seq, "%lu %lu %lu %lu %lu %lu\n",
r_xprt->rx_stats.mrs_recycled,
r_xprt->rx_stats.mrs_orphaned,
r_xprt->rx_stats.mrs_allocated,
xprtrdma: Add data structure to manage RDMA Send arguments Problem statement: Recently Sagi Grimberg <sagi@grimberg.me> observed that kernel RDMA- enabled storage initiators don't handle delayed Send completion correctly. If Send completion is delayed beyond the end of a ULP transaction, the ULP may release resources that are still being used by the HCA to complete a long-running Send operation. This is a common design trait amongst our initiators. Most Send operations are faster than the ULP transaction they are part of. Waiting for a completion for these is typically unnecessary. Infrequently, a network partition or some other problem crops up where an ordering problem can occur. In NFS parlance, the RPC Reply arrives and completes the RPC, but the HCA is still retrying the Send WR that conveyed the RPC Call. In this case, the HCA can try to use memory that has been invalidated or DMA unmapped, and the connection is lost. If that memory has been re-used for something else (possibly not related to NFS), and the Send retransmission exposes that data on the wire. Thus we cannot assume that it is safe to release Send-related resources just because a ULP reply has arrived. After some analysis, we have determined that the completion housekeeping will not be difficult for xprtrdma: - Inline Send buffers are registered via the local DMA key, and are already left DMA mapped for the lifetime of a transport connection, thus no additional handling is necessary for those - Gathered Sends involving page cache pages _will_ need to DMA unmap those pages after the Send completes. But like inline send buffers, they are registered via the local DMA key, and thus will not need to be invalidated In addition, RPC completion will need to wait for Send completion in the latter case. However, nearly always, the Send that conveys the RPC Call will have completed long before the RPC Reply arrives, and thus no additional latency will be accrued. Design notes: In this patch, the rpcrdma_sendctx object is introduced, and a lock-free circular queue is added to manage a set of them per transport. The RPC client's send path already prevents sending more than one RPC Call at the same time. This allows us to treat the consumer side of the queue (rpcrdma_sendctx_get_locked) as if there is a single consumer thread. The producer side of the queue (rpcrdma_sendctx_put_locked) is invoked only from the Send completion handler, which is a single thread of execution (soft IRQ). The only care that needs to be taken is with the tail index, which is shared between the producer and consumer. Only the producer updates the tail index. The consumer compares the head with the tail to ensure that the a sendctx that is in use is never handed out again (or, expressed more conventionally, the queue is empty). When the sendctx queue empties completely, there are enough Sends outstanding that posting more Send operations can result in a Send Queue overflow. In this case, the ULP is told to wait and try again. This introduces strong Send Queue accounting to xprtrdma. As a final touch, Jason Gunthorpe <jgunthorpe@obsidianresearch.com> suggested a mechanism that does not require signaling every Send. We signal once every N Sends, and perform SGE unmapping of N Send operations during that one completion. Reported-by: Sagi Grimberg <sagi@grimberg.me> Suggested-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2017-10-20 21:48:12 +07:00
r_xprt->rx_stats.local_inv_needed,
r_xprt->rx_stats.empty_sendctx_q,
r_xprt->rx_stats.reply_waits_for_send);
}
static int
xprt_rdma_enable_swap(struct rpc_xprt *xprt)
{
return 0;
}
static void
xprt_rdma_disable_swap(struct rpc_xprt *xprt)
{
}
/*
* Plumbing for rpc transport switch and kernel module
*/
static const struct rpc_xprt_ops xprt_rdma_procs = {
.reserve_xprt = xprt_reserve_xprt_cong,
.release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
.alloc_slot = xprt_rdma_alloc_slot,
.free_slot = xprt_rdma_free_slot,
.release_request = xprt_release_rqst_cong, /* ditto */
.set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
xprtrdma: Detect unreachable NFS/RDMA servers more reliably Current NFS clients rely on connection loss to determine when to retransmit. In particular, for protocols like NFSv4, clients no longer rely on RPC timeouts to drive retransmission: NFSv4 servers are required to terminate a connection when they need a client to retransmit pending RPCs. When a server is no longer reachable, either because it has crashed or because the network path has broken, the server cannot actively terminate a connection. Thus NFS clients depend on transport-level keepalive to determine when a connection must be replaced and pending RPCs retransmitted. However, RDMA RC connections do not have a native keepalive mechanism. If an NFS/RDMA server crashes after a client has sent RPCs successfully (an RC ACK has been received for all OTW RDMA requests), there is no way for the client to know the connection is moribund. In addition, new RDMA requests are subject to the RPC-over-RDMA credit limit. If the client has consumed all granted credits with NFS traffic, it is not allowed to send another RDMA request until the server replies. Thus it has no way to send a true keepalive when the workload has already consumed all credits with pending RPCs. To address this, forcibly disconnect a transport when an RPC times out. This prevents moribund connections from stopping the detection of failover or other configuration changes on the server. Note that even if the connection is still good, retransmitting any RPC will trigger a disconnect thanks to this logic in xprt_rdma_send_request: /* Must suppress retransmit to maintain credits */ if (req->rl_connect_cookie == xprt->connect_cookie) goto drop_connection; req->rl_connect_cookie = xprt->connect_cookie; Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2017-04-12 00:22:46 +07:00
.timer = xprt_rdma_timer,
.rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
.set_port = xprt_rdma_set_port,
.connect = xprt_rdma_connect,
.buf_alloc = xprt_rdma_allocate,
.buf_free = xprt_rdma_free,
.send_request = xprt_rdma_send_request,
.close = xprt_rdma_close,
.destroy = xprt_rdma_destroy,
.print_stats = xprt_rdma_print_stats,
.enable_swap = xprt_rdma_enable_swap,
.disable_swap = xprt_rdma_disable_swap,
.inject_disconnect = xprt_rdma_inject_disconnect,
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
.bc_setup = xprt_rdma_bc_setup,
.bc_up = xprt_rdma_bc_up,
.bc_maxpayload = xprt_rdma_bc_maxpayload,
.bc_free_rqst = xprt_rdma_bc_free_rqst,
.bc_destroy = xprt_rdma_bc_destroy,
#endif
};
static struct xprt_class xprt_rdma = {
.list = LIST_HEAD_INIT(xprt_rdma.list),
.name = "rdma",
.owner = THIS_MODULE,
.ident = XPRT_TRANSPORT_RDMA,
.setup = xprt_setup_rdma,
};
void xprt_rdma_cleanup(void)
{
int rc;
dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
if (sunrpc_table_header) {
unregister_sysctl_table(sunrpc_table_header);
sunrpc_table_header = NULL;
}
#endif
rc = xprt_unregister_transport(&xprt_rdma);
if (rc)
dprintk("RPC: %s: xprt_unregister returned %i\n",
__func__, rc);
rc = xprt_unregister_transport(&xprt_rdma_bc);
if (rc)
dprintk("RPC: %s: xprt_unregister(bc) returned %i\n",
__func__, rc);
}
int xprt_rdma_init(void)
{
int rc;
rc = xprt_register_transport(&xprt_rdma);
if (rc)
return rc;
rc = xprt_register_transport(&xprt_rdma_bc);
if (rc) {
xprt_unregister_transport(&xprt_rdma);
return rc;
}
dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
dprintk("Defaults:\n");
dprintk("\tSlots %d\n"
"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
xprt_rdma_slot_table_entries,
xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
dprintk("\tPadding 0\n\tMemreg %d\n", xprt_rdma_memreg_strategy);
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
if (!sunrpc_table_header)
sunrpc_table_header = register_sysctl_table(sunrpc_table);
#endif
return 0;
}