License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2013-02-05 00:50:00 +07:00
|
|
|
/*
|
|
|
|
* linux/include/linux/sunrpc/addr.h
|
|
|
|
*
|
|
|
|
* Various routines for copying and comparing sockaddrs and for
|
|
|
|
* converting them to and from presentation format.
|
|
|
|
*/
|
|
|
|
#ifndef _LINUX_SUNRPC_ADDR_H
|
|
|
|
#define _LINUX_SUNRPC_ADDR_H
|
|
|
|
|
|
|
|
#include <linux/socket.h>
|
|
|
|
#include <linux/in.h>
|
|
|
|
#include <linux/in6.h>
|
|
|
|
#include <net/ipv6.h>
|
|
|
|
|
|
|
|
size_t rpc_ntop(const struct sockaddr *, char *, const size_t);
|
|
|
|
size_t rpc_pton(struct net *, const char *, const size_t,
|
|
|
|
struct sockaddr *, const size_t);
|
|
|
|
char * rpc_sockaddr2uaddr(const struct sockaddr *, gfp_t);
|
|
|
|
size_t rpc_uaddr2sockaddr(struct net *, const char *, const size_t,
|
|
|
|
struct sockaddr *, const size_t);
|
|
|
|
|
|
|
|
static inline unsigned short rpc_get_port(const struct sockaddr *sap)
|
|
|
|
{
|
|
|
|
switch (sap->sa_family) {
|
|
|
|
case AF_INET:
|
|
|
|
return ntohs(((struct sockaddr_in *)sap)->sin_port);
|
|
|
|
case AF_INET6:
|
|
|
|
return ntohs(((struct sockaddr_in6 *)sap)->sin6_port);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void rpc_set_port(struct sockaddr *sap,
|
|
|
|
const unsigned short port)
|
|
|
|
{
|
|
|
|
switch (sap->sa_family) {
|
|
|
|
case AF_INET:
|
|
|
|
((struct sockaddr_in *)sap)->sin_port = htons(port);
|
|
|
|
break;
|
|
|
|
case AF_INET6:
|
|
|
|
((struct sockaddr_in6 *)sap)->sin6_port = htons(port);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define IPV6_SCOPE_DELIMITER '%'
|
|
|
|
#define IPV6_SCOPE_ID_LEN sizeof("%nnnnnnnnnn")
|
|
|
|
|
2015-07-14 01:01:26 +07:00
|
|
|
static inline bool rpc_cmp_addr4(const struct sockaddr *sap1,
|
|
|
|
const struct sockaddr *sap2)
|
2013-02-05 00:50:00 +07:00
|
|
|
{
|
|
|
|
const struct sockaddr_in *sin1 = (const struct sockaddr_in *)sap1;
|
|
|
|
const struct sockaddr_in *sin2 = (const struct sockaddr_in *)sap2;
|
|
|
|
|
|
|
|
return sin1->sin_addr.s_addr == sin2->sin_addr.s_addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool __rpc_copy_addr4(struct sockaddr *dst,
|
|
|
|
const struct sockaddr *src)
|
|
|
|
{
|
|
|
|
const struct sockaddr_in *ssin = (struct sockaddr_in *) src;
|
|
|
|
struct sockaddr_in *dsin = (struct sockaddr_in *) dst;
|
|
|
|
|
|
|
|
dsin->sin_family = ssin->sin_family;
|
|
|
|
dsin->sin_addr.s_addr = ssin->sin_addr.s_addr;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
2015-07-14 01:01:26 +07:00
|
|
|
static inline bool rpc_cmp_addr6(const struct sockaddr *sap1,
|
|
|
|
const struct sockaddr *sap2)
|
2013-02-05 00:50:00 +07:00
|
|
|
{
|
|
|
|
const struct sockaddr_in6 *sin1 = (const struct sockaddr_in6 *)sap1;
|
|
|
|
const struct sockaddr_in6 *sin2 = (const struct sockaddr_in6 *)sap2;
|
|
|
|
|
|
|
|
if (!ipv6_addr_equal(&sin1->sin6_addr, &sin2->sin6_addr))
|
|
|
|
return false;
|
|
|
|
else if (ipv6_addr_type(&sin1->sin6_addr) & IPV6_ADDR_LINKLOCAL)
|
|
|
|
return sin1->sin6_scope_id == sin2->sin6_scope_id;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool __rpc_copy_addr6(struct sockaddr *dst,
|
|
|
|
const struct sockaddr *src)
|
|
|
|
{
|
|
|
|
const struct sockaddr_in6 *ssin6 = (const struct sockaddr_in6 *) src;
|
|
|
|
struct sockaddr_in6 *dsin6 = (struct sockaddr_in6 *) dst;
|
|
|
|
|
|
|
|
dsin6->sin6_family = ssin6->sin6_family;
|
|
|
|
dsin6->sin6_addr = ssin6->sin6_addr;
|
|
|
|
dsin6->sin6_scope_id = ssin6->sin6_scope_id;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#else /* !(IS_ENABLED(CONFIG_IPV6) */
|
2015-08-18 02:46:51 +07:00
|
|
|
static inline bool rpc_cmp_addr6(const struct sockaddr *sap1,
|
2013-02-05 00:50:00 +07:00
|
|
|
const struct sockaddr *sap2)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool __rpc_copy_addr6(struct sockaddr *dst,
|
|
|
|
const struct sockaddr *src)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif /* !(IS_ENABLED(CONFIG_IPV6) */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rpc_cmp_addr - compare the address portion of two sockaddrs.
|
|
|
|
* @sap1: first sockaddr
|
|
|
|
* @sap2: second sockaddr
|
|
|
|
*
|
|
|
|
* Just compares the family and address portion. Ignores port, but
|
|
|
|
* compares the scope if it's a link-local address.
|
|
|
|
*
|
|
|
|
* Returns true if the addrs are equal, false if they aren't.
|
|
|
|
*/
|
|
|
|
static inline bool rpc_cmp_addr(const struct sockaddr *sap1,
|
|
|
|
const struct sockaddr *sap2)
|
|
|
|
{
|
|
|
|
if (sap1->sa_family == sap2->sa_family) {
|
|
|
|
switch (sap1->sa_family) {
|
|
|
|
case AF_INET:
|
2015-07-14 01:01:26 +07:00
|
|
|
return rpc_cmp_addr4(sap1, sap2);
|
2013-02-05 00:50:00 +07:00
|
|
|
case AF_INET6:
|
2015-07-14 01:01:26 +07:00
|
|
|
return rpc_cmp_addr6(sap1, sap2);
|
2013-02-05 00:50:00 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-07-14 01:01:27 +07:00
|
|
|
/**
|
|
|
|
* rpc_cmp_addr_port - compare the address and port number of two sockaddrs.
|
|
|
|
* @sap1: first sockaddr
|
|
|
|
* @sap2: second sockaddr
|
|
|
|
*/
|
|
|
|
static inline bool rpc_cmp_addr_port(const struct sockaddr *sap1,
|
|
|
|
const struct sockaddr *sap2)
|
|
|
|
{
|
|
|
|
if (!rpc_cmp_addr(sap1, sap2))
|
|
|
|
return false;
|
|
|
|
return rpc_get_port(sap1) == rpc_get_port(sap2);
|
|
|
|
}
|
|
|
|
|
2013-02-05 00:50:00 +07:00
|
|
|
/**
|
|
|
|
* rpc_copy_addr - copy the address portion of one sockaddr to another
|
|
|
|
* @dst: destination sockaddr
|
|
|
|
* @src: source sockaddr
|
|
|
|
*
|
|
|
|
* Just copies the address portion and family. Ignores port, scope, etc.
|
|
|
|
* Caller is responsible for making certain that dst is large enough to hold
|
|
|
|
* the address in src. Returns true if address family is supported. Returns
|
|
|
|
* false otherwise.
|
|
|
|
*/
|
|
|
|
static inline bool rpc_copy_addr(struct sockaddr *dst,
|
|
|
|
const struct sockaddr *src)
|
|
|
|
{
|
|
|
|
switch (src->sa_family) {
|
|
|
|
case AF_INET:
|
|
|
|
return __rpc_copy_addr4(dst, src);
|
|
|
|
case AF_INET6:
|
|
|
|
return __rpc_copy_addr6(dst, src);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rpc_get_scope_id - return scopeid for a given sockaddr
|
|
|
|
* @sa: sockaddr to get scopeid from
|
|
|
|
*
|
|
|
|
* Returns the value of the sin6_scope_id for AF_INET6 addrs, or 0 if
|
|
|
|
* not an AF_INET6 address.
|
|
|
|
*/
|
|
|
|
static inline u32 rpc_get_scope_id(const struct sockaddr *sa)
|
|
|
|
{
|
|
|
|
if (sa->sa_family != AF_INET6)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return ((struct sockaddr_in6 *) sa)->sin6_scope_id;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* _LINUX_SUNRPC_ADDR_H */
|