linux_dsm_epyc7002/drivers/clk/clk-si5341.c

1526 lines
38 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Silicon Labs Si5341/Si5340 Clock generator
* Copyright (C) 2019 Topic Embedded Products
* Author: Mike Looijmans <mike.looijmans@topic.nl>
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/gcd.h>
#include <linux/math64.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#define SI5341_NUM_INPUTS 4
#define SI5341_MAX_NUM_OUTPUTS 10
#define SI5340_MAX_NUM_OUTPUTS 4
#define SI5341_NUM_SYNTH 5
#define SI5340_NUM_SYNTH 4
/* Range of the synthesizer fractional divider */
#define SI5341_SYNTH_N_MIN 10
#define SI5341_SYNTH_N_MAX 4095
/* The chip can get its input clock from 3 input pins or an XTAL */
/* There is one PLL running at 1350014256 MHz */
#define SI5341_PLL_VCO_MIN 13500000000ull
#define SI5341_PLL_VCO_MAX 14256000000ull
/* The 5 frequency synthesizers obtain their input from the PLL */
struct clk_si5341_synth {
struct clk_hw hw;
struct clk_si5341 *data;
u8 index;
};
#define to_clk_si5341_synth(_hw) \
container_of(_hw, struct clk_si5341_synth, hw)
/* The output stages can be connected to any synth (full mux) */
struct clk_si5341_output {
struct clk_hw hw;
struct clk_si5341 *data;
u8 index;
};
#define to_clk_si5341_output(_hw) \
container_of(_hw, struct clk_si5341_output, hw)
struct clk_si5341 {
struct clk_hw hw;
struct regmap *regmap;
struct i2c_client *i2c_client;
struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
struct clk *input_clk[SI5341_NUM_INPUTS];
const char *input_clk_name[SI5341_NUM_INPUTS];
const u16 *reg_output_offset;
const u16 *reg_rdiv_offset;
u64 freq_vco; /* 1350014256 MHz */
u8 num_outputs;
u8 num_synth;
};
#define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw)
struct clk_si5341_output_config {
u8 out_format_drv_bits;
u8 out_cm_ampl_bits;
bool synth_master;
bool always_on;
};
#define SI5341_PAGE 0x0001
#define SI5341_PN_BASE 0x0002
#define SI5341_DEVICE_REV 0x0005
#define SI5341_STATUS 0x000C
#define SI5341_SOFT_RST 0x001C
#define SI5341_IN_SEL 0x0021
#define SI5341_XAXB_CFG 0x090E
#define SI5341_IN_EN 0x0949
#define SI5341_INX_TO_PFD_EN 0x094A
/* Input selection */
#define SI5341_IN_SEL_MASK 0x06
#define SI5341_IN_SEL_SHIFT 1
#define SI5341_IN_SEL_REGCTRL 0x01
#define SI5341_INX_TO_PFD_SHIFT 4
/* XTAL config bits */
#define SI5341_XAXB_CFG_EXTCLK_EN BIT(0)
#define SI5341_XAXB_CFG_PDNB BIT(1)
/* Input dividers (48-bit) */
#define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10))
#define SI5341_IN_PSET(x) (0x020E + ((x) * 10))
#define SI5341_PX_UPD 0x0230
/* PLL configuration */
#define SI5341_PLL_M_NUM 0x0235
#define SI5341_PLL_M_DEN 0x023B
/* Output configuration */
#define SI5341_OUT_CONFIG(output) \
((output)->data->reg_output_offset[(output)->index])
#define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1)
#define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2)
#define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3)
#define SI5341_OUT_R_REG(output) \
((output)->data->reg_rdiv_offset[(output)->index])
/* Synthesize N divider */
#define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11))
#define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11))
#define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11))
/* Synthesizer output enable, phase bypass, power mode */
#define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03
#define SI5341_SYNTH_N_PIBYP 0x0A04
#define SI5341_SYNTH_N_PDNB 0x0A05
#define SI5341_SYNTH_N_CLK_DIS 0x0B4A
#define SI5341_REGISTER_MAX 0xBFF
/* SI5341_OUT_CONFIG bits */
#define SI5341_OUT_CFG_PDN BIT(0)
#define SI5341_OUT_CFG_OE BIT(1)
#define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2)
/* Static configuration (to be moved to firmware) */
struct si5341_reg_default {
u16 address;
u8 value;
};
static const char * const si5341_input_clock_names[] = {
"in0", "in1", "in2", "xtal"
};
/* Output configuration registers 0..9 are not quite logically organized */
static const u16 si5341_reg_output_offset[] = {
0x0108,
0x010D,
0x0112,
0x0117,
0x011C,
0x0121,
0x0126,
0x012B,
0x0130,
0x013A,
};
static const u16 si5340_reg_output_offset[] = {
0x0112,
0x0117,
0x0126,
0x012B,
};
/* The location of the R divider registers */
static const u16 si5341_reg_rdiv_offset[] = {
0x024A,
0x024D,
0x0250,
0x0253,
0x0256,
0x0259,
0x025C,
0x025F,
0x0262,
0x0268,
};
static const u16 si5340_reg_rdiv_offset[] = {
0x0250,
0x0253,
0x025C,
0x025F,
};
/*
* Programming sequence from ClockBuilder, settings to initialize the system
* using only the XTAL input, without pre-divider.
* This also contains settings that aren't mentioned anywhere in the datasheet.
* The "known" settings like synth and output configuration are done later.
*/
static const struct si5341_reg_default si5341_reg_defaults[] = {
{ 0x0017, 0x3A }, /* INT mask (disable interrupts) */
{ 0x0018, 0xFF }, /* INT mask */
{ 0x0021, 0x0F }, /* Select XTAL as input */
{ 0x0022, 0x00 }, /* Not in datasheet */
{ 0x002B, 0x02 }, /* SPI config */
{ 0x002C, 0x20 }, /* LOS enable for XTAL */
{ 0x002D, 0x00 }, /* LOS timing */
{ 0x002E, 0x00 },
{ 0x002F, 0x00 },
{ 0x0030, 0x00 },
{ 0x0031, 0x00 },
{ 0x0032, 0x00 },
{ 0x0033, 0x00 },
{ 0x0034, 0x00 },
{ 0x0035, 0x00 },
{ 0x0036, 0x00 },
{ 0x0037, 0x00 },
{ 0x0038, 0x00 }, /* LOS setting (thresholds) */
{ 0x0039, 0x00 },
{ 0x003A, 0x00 },
{ 0x003B, 0x00 },
{ 0x003C, 0x00 },
{ 0x003D, 0x00 }, /* LOS setting (thresholds) end */
{ 0x0041, 0x00 }, /* LOS0_DIV_SEL */
{ 0x0042, 0x00 }, /* LOS1_DIV_SEL */
{ 0x0043, 0x00 }, /* LOS2_DIV_SEL */
{ 0x0044, 0x00 }, /* LOS3_DIV_SEL */
{ 0x009E, 0x00 }, /* Not in datasheet */
{ 0x0102, 0x01 }, /* Enable outputs */
{ 0x013F, 0x00 }, /* Not in datasheet */
{ 0x0140, 0x00 }, /* Not in datasheet */
{ 0x0141, 0x40 }, /* OUT LOS */
{ 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
{ 0x0203, 0x00 },
{ 0x0204, 0x00 },
{ 0x0205, 0x00 },
{ 0x0206, 0x00 }, /* PXAXB (2^x) */
{ 0x0208, 0x00 }, /* Px divider setting (usually 0) */
{ 0x0209, 0x00 },
{ 0x020A, 0x00 },
{ 0x020B, 0x00 },
{ 0x020C, 0x00 },
{ 0x020D, 0x00 },
{ 0x020E, 0x00 },
{ 0x020F, 0x00 },
{ 0x0210, 0x00 },
{ 0x0211, 0x00 },
{ 0x0212, 0x00 },
{ 0x0213, 0x00 },
{ 0x0214, 0x00 },
{ 0x0215, 0x00 },
{ 0x0216, 0x00 },
{ 0x0217, 0x00 },
{ 0x0218, 0x00 },
{ 0x0219, 0x00 },
{ 0x021A, 0x00 },
{ 0x021B, 0x00 },
{ 0x021C, 0x00 },
{ 0x021D, 0x00 },
{ 0x021E, 0x00 },
{ 0x021F, 0x00 },
{ 0x0220, 0x00 },
{ 0x0221, 0x00 },
{ 0x0222, 0x00 },
{ 0x0223, 0x00 },
{ 0x0224, 0x00 },
{ 0x0225, 0x00 },
{ 0x0226, 0x00 },
{ 0x0227, 0x00 },
{ 0x0228, 0x00 },
{ 0x0229, 0x00 },
{ 0x022A, 0x00 },
{ 0x022B, 0x00 },
{ 0x022C, 0x00 },
{ 0x022D, 0x00 },
{ 0x022E, 0x00 },
{ 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
{ 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
{ 0x026C, 0x00 },
{ 0x026D, 0x00 },
{ 0x026E, 0x00 },
{ 0x026F, 0x00 },
{ 0x0270, 0x00 },
{ 0x0271, 0x00 },
{ 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
{ 0x0339, 0x1F }, /* N_FSTEP_MSK */
{ 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
{ 0x033C, 0x00 },
{ 0x033D, 0x00 },
{ 0x033E, 0x00 },
{ 0x033F, 0x00 },
{ 0x0340, 0x00 },
{ 0x0341, 0x00 },
{ 0x0342, 0x00 },
{ 0x0343, 0x00 },
{ 0x0344, 0x00 },
{ 0x0345, 0x00 },
{ 0x0346, 0x00 },
{ 0x0347, 0x00 },
{ 0x0348, 0x00 },
{ 0x0349, 0x00 },
{ 0x034A, 0x00 },
{ 0x034B, 0x00 },
{ 0x034C, 0x00 },
{ 0x034D, 0x00 },
{ 0x034E, 0x00 },
{ 0x034F, 0x00 },
{ 0x0350, 0x00 },
{ 0x0351, 0x00 },
{ 0x0352, 0x00 },
{ 0x0353, 0x00 },
{ 0x0354, 0x00 },
{ 0x0355, 0x00 },
{ 0x0356, 0x00 },
{ 0x0357, 0x00 },
{ 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
{ 0x0359, 0x00 }, /* Nx_DELAY */
{ 0x035A, 0x00 },
{ 0x035B, 0x00 },
{ 0x035C, 0x00 },
{ 0x035D, 0x00 },
{ 0x035E, 0x00 },
{ 0x035F, 0x00 },
{ 0x0360, 0x00 },
{ 0x0361, 0x00 },
{ 0x0362, 0x00 }, /* Nx_DELAY end */
{ 0x0802, 0x00 }, /* Not in datasheet */
{ 0x0803, 0x00 }, /* Not in datasheet */
{ 0x0804, 0x00 }, /* Not in datasheet */
{ 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
{ 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
{ 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
{ 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
{ 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
{ 0x0A02, 0x00 }, /* Not in datasheet */
{ 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
};
/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
u64 *val1, u32 *val2)
{
int err;
u8 r[10];
err = regmap_bulk_read(regmap, reg, r, 10);
if (err < 0)
return err;
*val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
(get_unaligned_le32(r));
*val2 = get_unaligned_le32(&r[6]);
return 0;
}
static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
u64 n_num, u32 n_den)
{
u8 r[10];
/* Shift left as far as possible without overflowing */
while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
n_num <<= 1;
n_den <<= 1;
}
/* 44 bits (6 bytes) numerator */
put_unaligned_le32(n_num, r);
r[4] = (n_num >> 32) & 0xff;
r[5] = (n_num >> 40) & 0x0f;
/* 32 bits denominator */
put_unaligned_le32(n_den, &r[6]);
/* Program the fraction */
return regmap_bulk_write(regmap, reg, r, sizeof(r));
}
/* VCO, we assume it runs at a constant frequency */
static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_si5341 *data = to_clk_si5341(hw);
int err;
u64 res;
u64 m_num;
u32 m_den;
unsigned int shift;
/* Assume that PDIV is not being used, just read the PLL setting */
err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
&m_num, &m_den);
if (err < 0)
return 0;
if (!m_num || !m_den)
return 0;
/*
* Though m_num is 64-bit, only the upper bits are actually used. While
* calculating m_num and m_den, they are shifted as far as possible to
* the left. To avoid 96-bit division here, we just shift them back so
* we can do with just 64 bits.
*/
shift = 0;
res = m_num;
while (res & 0xffff00000000ULL) {
++shift;
res >>= 1;
}
res *= parent_rate;
do_div(res, (m_den >> shift));
/* We cannot return the actual frequency in 32 bit, store it locally */
data->freq_vco = res;
/* Report kHz since the value is out of range */
do_div(res, 1000);
return (unsigned long)res;
}
static int si5341_clk_get_selected_input(struct clk_si5341 *data)
{
int err;
u32 val;
err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
if (err < 0)
return err;
return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
}
static u8 si5341_clk_get_parent(struct clk_hw *hw)
{
struct clk_si5341 *data = to_clk_si5341(hw);
int res = si5341_clk_get_selected_input(data);
if (res < 0)
return 0; /* Apparently we cannot report errors */
return res;
}
static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
{
int err;
u8 val;
val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
/* Enable register-based input selection */
val |= SI5341_IN_SEL_REGCTRL;
err = regmap_update_bits(data->regmap,
SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
if (err < 0)
return err;
if (index < 3) {
/* Enable input buffer for selected input */
err = regmap_update_bits(data->regmap,
SI5341_IN_EN, 0x07, BIT(index));
if (err < 0)
return err;
/* Enables the input to phase detector */
err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
0x7 << SI5341_INX_TO_PFD_SHIFT,
BIT(index + SI5341_INX_TO_PFD_SHIFT));
if (err < 0)
return err;
/* Power down XTAL oscillator and buffer */
err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
SI5341_XAXB_CFG_PDNB, 0);
if (err < 0)
return err;
/*
* Set the P divider to "1". There's no explanation in the
* datasheet of these registers, but the clockbuilder software
* programs a "1" when the input is being used.
*/
err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
if (err < 0)
return err;
err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
if (err < 0)
return err;
/* Set update PDIV bit */
err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
if (err < 0)
return err;
} else {
/* Disable all input buffers */
err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
if (err < 0)
return err;
/* Disable input to phase detector */
err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
if (err < 0)
return err;
/* Power up XTAL oscillator and buffer */
err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB);
if (err < 0)
return err;
}
return 0;
}
static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_si5341 *data = to_clk_si5341(hw);
return si5341_clk_reparent(data, index);
}
static const struct clk_ops si5341_clk_ops = {
.set_parent = si5341_clk_set_parent,
.get_parent = si5341_clk_get_parent,
.recalc_rate = si5341_clk_recalc_rate,
};
/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
/* The synthesizer is on if all power and enable bits are set */
static int si5341_synth_clk_is_on(struct clk_hw *hw)
{
struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
int err;
u32 val;
u8 index = synth->index;
err = regmap_read(synth->data->regmap,
SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
if (err < 0)
return 0;
if (!(val & BIT(index)))
return 0;
err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
if (err < 0)
return 0;
if (!(val & BIT(index)))
return 0;
/* This bit must be 0 for the synthesizer to receive clock input */
err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
if (err < 0)
return 0;
return !(val & BIT(index));
}
static void si5341_synth_clk_unprepare(struct clk_hw *hw)
{
struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
u8 index = synth->index; /* In range 0..5 */
u8 mask = BIT(index);
/* Disable output */
regmap_update_bits(synth->data->regmap,
SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
/* Power down */
regmap_update_bits(synth->data->regmap,
SI5341_SYNTH_N_PDNB, mask, 0);
/* Disable clock input to synth (set to 1 to disable) */
regmap_update_bits(synth->data->regmap,
SI5341_SYNTH_N_CLK_DIS, mask, mask);
}
static int si5341_synth_clk_prepare(struct clk_hw *hw)
{
struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
int err;
u8 index = synth->index;
u8 mask = BIT(index);
/* Power up */
err = regmap_update_bits(synth->data->regmap,
SI5341_SYNTH_N_PDNB, mask, mask);
if (err < 0)
return err;
/* Enable clock input to synth (set bit to 0 to enable) */
err = regmap_update_bits(synth->data->regmap,
SI5341_SYNTH_N_CLK_DIS, mask, 0);
if (err < 0)
return err;
/* Enable output */
return regmap_update_bits(synth->data->regmap,
SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
}
/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
u64 f;
u64 n_num;
u32 n_den;
int err;
err = si5341_decode_44_32(synth->data->regmap,
SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
if (err < 0)
return err;
/*
* n_num and n_den are shifted left as much as possible, so to prevent
* overflow in 64-bit math, we shift n_den 4 bits to the right
*/
f = synth->data->freq_vco;
f *= n_den >> 4;
/* Now we need to to 64-bit division: f/n_num */
/* And compensate for the 4 bits we dropped */
f = div64_u64(f, (n_num >> 4));
return f;
}
static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
u64 f;
/* The synthesizer accuracy is such that anything in range will work */
f = synth->data->freq_vco;
do_div(f, SI5341_SYNTH_N_MAX);
if (rate < f)
return f;
f = synth->data->freq_vco;
do_div(f, SI5341_SYNTH_N_MIN);
if (rate > f)
return f;
return rate;
}
static int si5341_synth_program(struct clk_si5341_synth *synth,
u64 n_num, u32 n_den, bool is_integer)
{
int err;
u8 index = synth->index;
err = si5341_encode_44_32(synth->data->regmap,
SI5341_SYNTH_N_NUM(index), n_num, n_den);
err = regmap_update_bits(synth->data->regmap,
SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
if (err < 0)
return err;
return regmap_write(synth->data->regmap,
SI5341_SYNTH_N_UPD(index), 0x01);
}
static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
u64 n_num;
u32 n_den;
u32 r;
u32 g;
bool is_integer;
n_num = synth->data->freq_vco;
/* see if there's an integer solution */
r = do_div(n_num, rate);
is_integer = (r == 0);
if (is_integer) {
/* Integer divider equal to n_num */
n_den = 1;
} else {
/* Calculate a fractional solution */
g = gcd(r, rate);
n_den = rate / g;
n_num *= n_den;
n_num += r / g;
}
dev_dbg(&synth->data->i2c_client->dev,
"%s(%u): n=0x%llx d=0x%x %s\n", __func__,
synth->index, n_num, n_den,
is_integer ? "int" : "frac");
return si5341_synth_program(synth, n_num, n_den, is_integer);
}
static const struct clk_ops si5341_synth_clk_ops = {
.is_prepared = si5341_synth_clk_is_on,
.prepare = si5341_synth_clk_prepare,
.unprepare = si5341_synth_clk_unprepare,
.recalc_rate = si5341_synth_clk_recalc_rate,
.round_rate = si5341_synth_clk_round_rate,
.set_rate = si5341_synth_clk_set_rate,
};
static int si5341_output_clk_is_on(struct clk_hw *hw)
{
struct clk_si5341_output *output = to_clk_si5341_output(hw);
int err;
u32 val;
err = regmap_read(output->data->regmap,
SI5341_OUT_CONFIG(output), &val);
if (err < 0)
return err;
/* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
return (val & 0x03) == SI5341_OUT_CFG_OE;
}
/* Disables and then powers down the output */
static void si5341_output_clk_unprepare(struct clk_hw *hw)
{
struct clk_si5341_output *output = to_clk_si5341_output(hw);
regmap_update_bits(output->data->regmap,
SI5341_OUT_CONFIG(output),
SI5341_OUT_CFG_OE, 0);
regmap_update_bits(output->data->regmap,
SI5341_OUT_CONFIG(output),
SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
}
/* Powers up and then enables the output */
static int si5341_output_clk_prepare(struct clk_hw *hw)
{
struct clk_si5341_output *output = to_clk_si5341_output(hw);
int err;
err = regmap_update_bits(output->data->regmap,
SI5341_OUT_CONFIG(output),
SI5341_OUT_CFG_PDN, 0);
if (err < 0)
return err;
return regmap_update_bits(output->data->regmap,
SI5341_OUT_CONFIG(output),
SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
}
static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_si5341_output *output = to_clk_si5341_output(hw);
int err;
u32 val;
u32 r_divider;
u8 r[3];
err = regmap_bulk_read(output->data->regmap,
SI5341_OUT_R_REG(output), r, 3);
if (err < 0)
return err;
/* Calculate value as 24-bit integer*/
r_divider = r[2] << 16 | r[1] << 8 | r[0];
/* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
if (!r_divider)
return 0;
/* Divider is 2*(Rx_REG+1) */
r_divider += 1;
r_divider <<= 1;
err = regmap_read(output->data->regmap,
SI5341_OUT_CONFIG(output), &val);
if (err < 0)
return err;
if (val & SI5341_OUT_CFG_RDIV_FORCE2)
r_divider = 2;
return parent_rate / r_divider;
}
static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long r;
r = *parent_rate >> 1;
/* If rate is an even divisor, no changes to parent required */
if (r && !(r % rate))
return (long)rate;
if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
if (rate > 200000000) {
/* minimum r-divider is 2 */
r = 2;
} else {
/* Take a parent frequency near 400 MHz */
r = (400000000u / rate) & ~1;
}
*parent_rate = r * rate;
} else {
/* We cannot change our parent's rate, report what we can do */
r /= rate;
rate = *parent_rate / (r << 1);
}
return rate;
}
static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_si5341_output *output = to_clk_si5341_output(hw);
/* Frequency divider is (r_div + 1) * 2 */
u32 r_div = (parent_rate / rate) >> 1;
int err;
u8 r[3];
if (r_div <= 1)
r_div = 0;
else if (r_div >= BIT(24))
r_div = BIT(24) - 1;
else
--r_div;
/* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
err = regmap_update_bits(output->data->regmap,
SI5341_OUT_CONFIG(output),
SI5341_OUT_CFG_RDIV_FORCE2,
(r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
if (err < 0)
return err;
/* Always write Rx_REG, because a zero value disables the divider */
r[0] = r_div ? (r_div & 0xff) : 1;
r[1] = (r_div >> 8) & 0xff;
r[2] = (r_div >> 16) & 0xff;
err = regmap_bulk_write(output->data->regmap,
SI5341_OUT_R_REG(output), r, 3);
return 0;
}
static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
{
return regmap_update_bits(output->data->regmap,
SI5341_OUT_MUX_SEL(output), 0x07, index);
}
static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_si5341_output *output = to_clk_si5341_output(hw);
if (index >= output->data->num_synth)
return -EINVAL;
return si5341_output_reparent(output, index);
}
static u8 si5341_output_get_parent(struct clk_hw *hw)
{
struct clk_si5341_output *output = to_clk_si5341_output(hw);
int err;
u32 val;
err = regmap_read(output->data->regmap,
SI5341_OUT_MUX_SEL(output), &val);
return val & 0x7;
}
static const struct clk_ops si5341_output_clk_ops = {
.is_prepared = si5341_output_clk_is_on,
.prepare = si5341_output_clk_prepare,
.unprepare = si5341_output_clk_unprepare,
.recalc_rate = si5341_output_clk_recalc_rate,
.round_rate = si5341_output_clk_round_rate,
.set_rate = si5341_output_clk_set_rate,
.set_parent = si5341_output_set_parent,
.get_parent = si5341_output_get_parent,
};
/*
* The chip can be bought in a pre-programmed version, or one can program the
* NVM in the chip to boot up in a preset mode. This routine tries to determine
* if that's the case, or if we need to reset and program everything from
* scratch. Returns negative error, or true/false.
*/
static int si5341_is_programmed_already(struct clk_si5341 *data)
{
int err;
u8 r[4];
/* Read the PLL divider value, it must have a non-zero value */
err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
r, ARRAY_SIZE(r));
if (err < 0)
return err;
return !!get_unaligned_le32(r);
}
static struct clk_hw *
of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
{
struct clk_si5341 *data = _data;
unsigned int idx = clkspec->args[1];
unsigned int group = clkspec->args[0];
switch (group) {
case 0:
if (idx >= data->num_outputs) {
dev_err(&data->i2c_client->dev,
"invalid output index %u\n", idx);
return ERR_PTR(-EINVAL);
}
return &data->clk[idx].hw;
case 1:
if (idx >= data->num_synth) {
dev_err(&data->i2c_client->dev,
"invalid synthesizer index %u\n", idx);
return ERR_PTR(-EINVAL);
}
return &data->synth[idx].hw;
case 2:
if (idx > 0) {
dev_err(&data->i2c_client->dev,
"invalid PLL index %u\n", idx);
return ERR_PTR(-EINVAL);
}
return &data->hw;
default:
dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
return ERR_PTR(-EINVAL);
}
}
static int si5341_probe_chip_id(struct clk_si5341 *data)
{
int err;
u8 reg[4];
u16 model;
err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
ARRAY_SIZE(reg));
if (err < 0) {
dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
return err;
}
model = get_unaligned_le16(reg);
dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
model, reg[2], reg[3]);
switch (model) {
case 0x5340:
data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
data->num_synth = SI5340_NUM_SYNTH;
data->reg_output_offset = si5340_reg_output_offset;
data->reg_rdiv_offset = si5340_reg_rdiv_offset;
break;
case 0x5341:
data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
data->num_synth = SI5341_NUM_SYNTH;
data->reg_output_offset = si5341_reg_output_offset;
data->reg_rdiv_offset = si5341_reg_rdiv_offset;
break;
default:
dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
model);
return -EINVAL;
}
return 0;
}
/* Read active settings into the regmap cache for later reference */
static int si5341_read_settings(struct clk_si5341 *data)
{
int err;
u8 i;
u8 r[10];
err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
if (err < 0)
return err;
err = regmap_bulk_read(data->regmap,
SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
if (err < 0)
return err;
err = regmap_bulk_read(data->regmap,
SI5341_SYNTH_N_CLK_DIS, r, 1);
if (err < 0)
return err;
for (i = 0; i < data->num_synth; ++i) {
err = regmap_bulk_read(data->regmap,
SI5341_SYNTH_N_NUM(i), r, 10);
if (err < 0)
return err;
}
for (i = 0; i < data->num_outputs; ++i) {
err = regmap_bulk_read(data->regmap,
data->reg_output_offset[i], r, 4);
if (err < 0)
return err;
err = regmap_bulk_read(data->regmap,
data->reg_rdiv_offset[i], r, 3);
if (err < 0)
return err;
}
return 0;
}
static int si5341_write_multiple(struct clk_si5341 *data,
const struct si5341_reg_default *values, unsigned int num_values)
{
unsigned int i;
int res;
for (i = 0; i < num_values; ++i) {
res = regmap_write(data->regmap,
values[i].address, values[i].value);
if (res < 0) {
dev_err(&data->i2c_client->dev,
"Failed to write %#x:%#x\n",
values[i].address, values[i].value);
return res;
}
}
return 0;
}
static const struct si5341_reg_default si5341_preamble[] = {
{ 0x0B25, 0x00 },
{ 0x0502, 0x01 },
{ 0x0505, 0x03 },
{ 0x0957, 0x1F },
{ 0x0B4E, 0x1A },
};
static int si5341_send_preamble(struct clk_si5341 *data)
{
int res;
u32 revision;
/* For revision 2 and up, the values are slightly different */
res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
if (res < 0)
return res;
/* Write "preamble" as specified by datasheet */
res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
if (res < 0)
return res;
res = si5341_write_multiple(data,
si5341_preamble, ARRAY_SIZE(si5341_preamble));
if (res < 0)
return res;
/* Datasheet specifies a 300ms wait after sending the preamble */
msleep(300);
return 0;
}
/* Perform a soft reset and write post-amble */
static int si5341_finalize_defaults(struct clk_si5341 *data)
{
int res;
u32 revision;
res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
if (res < 0)
return res;
dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
if (res < 0)
return res;
/* Datasheet does not explain these nameless registers */
res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
if (res < 0)
return res;
res = regmap_write(data->regmap, 0x0B25, 0x02);
if (res < 0)
return res;
return 0;
}
static const struct regmap_range si5341_regmap_volatile_range[] = {
regmap_reg_range(0x000C, 0x0012), /* Status */
regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
/* Update bits for P divider and synth config */
regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
};
static const struct regmap_access_table si5341_regmap_volatile = {
.yes_ranges = si5341_regmap_volatile_range,
.n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
};
/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
static const struct regmap_range_cfg si5341_regmap_ranges[] = {
{
.range_min = 0,
.range_max = SI5341_REGISTER_MAX,
.selector_reg = SI5341_PAGE,
.selector_mask = 0xff,
.selector_shift = 0,
.window_start = 0,
.window_len = 256,
},
};
static const struct regmap_config si5341_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
.ranges = si5341_regmap_ranges,
.num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
.max_register = SI5341_REGISTER_MAX,
.volatile_table = &si5341_regmap_volatile,
};
static int si5341_dt_parse_dt(struct i2c_client *client,
struct clk_si5341_output_config *config)
{
struct device_node *child;
struct device_node *np = client->dev.of_node;
u32 num;
u32 val;
memset(config, 0, sizeof(struct clk_si5341_output_config) *
SI5341_MAX_NUM_OUTPUTS);
for_each_child_of_node(np, child) {
if (of_property_read_u32(child, "reg", &num)) {
dev_err(&client->dev, "missing reg property of %s\n",
child->name);
goto put_child;
}
if (num >= SI5341_MAX_NUM_OUTPUTS) {
dev_err(&client->dev, "invalid clkout %d\n", num);
goto put_child;
}
if (!of_property_read_u32(child, "silabs,format", &val)) {
/* Set cm and ampl conservatively to 3v3 settings */
switch (val) {
case 1: /* normal differential */
config[num].out_cm_ampl_bits = 0x33;
break;
case 2: /* low-power differential */
config[num].out_cm_ampl_bits = 0x13;
break;
case 4: /* LVCMOS */
config[num].out_cm_ampl_bits = 0x33;
/* Set SI recommended impedance for LVCMOS */
config[num].out_format_drv_bits |= 0xc0;
break;
default:
dev_err(&client->dev,
"invalid silabs,format %u for %u\n",
val, num);
goto put_child;
}
config[num].out_format_drv_bits &= ~0x07;
config[num].out_format_drv_bits |= val & 0x07;
/* Always enable the SYNC feature */
config[num].out_format_drv_bits |= 0x08;
}
if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
if (val > 0xf) {
dev_err(&client->dev,
"invalid silabs,common-mode %u\n",
val);
goto put_child;
}
config[num].out_cm_ampl_bits &= 0xf0;
config[num].out_cm_ampl_bits |= val & 0x0f;
}
if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
if (val > 0xf) {
dev_err(&client->dev,
"invalid silabs,amplitude %u\n",
val);
goto put_child;
}
config[num].out_cm_ampl_bits &= 0x0f;
config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
}
if (of_property_read_bool(child, "silabs,disable-high"))
config[num].out_format_drv_bits |= 0x10;
config[num].synth_master =
of_property_read_bool(child, "silabs,synth-master");
config[num].always_on =
of_property_read_bool(child, "always-on");
}
return 0;
put_child:
of_node_put(child);
return -EINVAL;
}
/*
* If not pre-configured, calculate and set the PLL configuration manually.
* For low-jitter performance, the PLL should be set such that the synthesizers
* only need integer division.
* Without any user guidance, we'll set the PLL to 14GHz, which still allows
* the chip to generate any frequency on its outputs, but jitter performance
* may be sub-optimal.
*/
static int si5341_initialize_pll(struct clk_si5341 *data)
{
struct device_node *np = data->i2c_client->dev.of_node;
u32 m_num = 0;
u32 m_den = 0;
int sel;
if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
dev_err(&data->i2c_client->dev,
"PLL configuration requires silabs,pll-m-num\n");
}
if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
dev_err(&data->i2c_client->dev,
"PLL configuration requires silabs,pll-m-den\n");
}
if (!m_num || !m_den) {
dev_err(&data->i2c_client->dev,
"PLL configuration invalid, assume 14GHz\n");
sel = si5341_clk_get_selected_input(data);
if (sel < 0)
return sel;
m_den = clk_get_rate(data->input_clk[sel]) / 10;
m_num = 1400000000;
}
return si5341_encode_44_32(data->regmap,
SI5341_PLL_M_NUM, m_num, m_den);
}
static int si5341_clk_select_active_input(struct clk_si5341 *data)
{
int res;
int err;
int i;
res = si5341_clk_get_selected_input(data);
if (res < 0)
return res;
/* If the current register setting is invalid, pick the first input */
if (!data->input_clk[res]) {
dev_dbg(&data->i2c_client->dev,
"Input %d not connected, rerouting\n", res);
res = -ENODEV;
for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
if (data->input_clk[i]) {
res = i;
break;
}
}
if (res < 0) {
dev_err(&data->i2c_client->dev,
"No clock input available\n");
return res;
}
}
/* Make sure the selected clock is also enabled and routed */
err = si5341_clk_reparent(data, res);
if (err < 0)
return err;
err = clk_prepare_enable(data->input_clk[res]);
if (err < 0)
return err;
return res;
}
static int si5341_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct clk_si5341 *data;
struct clk_init_data init;
struct clk *input;
const char *root_clock_name;
const char *synth_clock_names[SI5341_NUM_SYNTH];
int err;
unsigned int i;
struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
bool initialization_required;
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->i2c_client = client;
for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
if (IS_ERR(input)) {
if (PTR_ERR(input) == -EPROBE_DEFER)
return -EPROBE_DEFER;
data->input_clk_name[i] = si5341_input_clock_names[i];
} else {
data->input_clk[i] = input;
data->input_clk_name[i] = __clk_get_name(input);
}
}
err = si5341_dt_parse_dt(client, config);
if (err)
return err;
if (of_property_read_string(client->dev.of_node, "clock-output-names",
&init.name))
init.name = client->dev.of_node->name;
root_clock_name = init.name;
data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
i2c_set_clientdata(client, data);
err = si5341_probe_chip_id(data);
if (err < 0)
return err;
if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
initialization_required = true;
} else {
err = si5341_is_programmed_already(data);
if (err < 0)
return err;
initialization_required = !err;
}
if (initialization_required) {
/* Populate the regmap cache in preparation for "cache only" */
err = si5341_read_settings(data);
if (err < 0)
return err;
err = si5341_send_preamble(data);
if (err < 0)
return err;
/*
* We intend to send all 'final' register values in a single
* transaction. So cache all register writes until we're done
* configuring.
*/
regcache_cache_only(data->regmap, true);
/* Write the configuration pairs from the firmware blob */
err = si5341_write_multiple(data, si5341_reg_defaults,
ARRAY_SIZE(si5341_reg_defaults));
if (err < 0)
return err;
}
/* Input must be up and running at this point */
err = si5341_clk_select_active_input(data);
if (err < 0)
return err;
if (initialization_required) {
/* PLL configuration is required */
err = si5341_initialize_pll(data);
if (err < 0)
return err;
}
/* Register the PLL */
init.parent_names = data->input_clk_name;
init.num_parents = SI5341_NUM_INPUTS;
init.ops = &si5341_clk_ops;
init.flags = 0;
data->hw.init = &init;
err = devm_clk_hw_register(&client->dev, &data->hw);
if (err) {
dev_err(&client->dev, "clock registration failed\n");
return err;
}
init.num_parents = 1;
init.parent_names = &root_clock_name;
init.ops = &si5341_synth_clk_ops;
for (i = 0; i < data->num_synth; ++i) {
synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
"%s.N%u", client->dev.of_node->name, i);
init.name = synth_clock_names[i];
data->synth[i].index = i;
data->synth[i].data = data;
data->synth[i].hw.init = &init;
err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
if (err) {
dev_err(&client->dev,
"synth N%u registration failed\n", i);
}
}
init.num_parents = data->num_synth;
init.parent_names = synth_clock_names;
init.ops = &si5341_output_clk_ops;
for (i = 0; i < data->num_outputs; ++i) {
init.name = kasprintf(GFP_KERNEL, "%s.%d",
client->dev.of_node->name, i);
init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
data->clk[i].index = i;
data->clk[i].data = data;
data->clk[i].hw.init = &init;
if (config[i].out_format_drv_bits & 0x07) {
regmap_write(data->regmap,
SI5341_OUT_FORMAT(&data->clk[i]),
config[i].out_format_drv_bits);
regmap_write(data->regmap,
SI5341_OUT_CM(&data->clk[i]),
config[i].out_cm_ampl_bits);
}
err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
kfree(init.name); /* clock framework made a copy of the name */
if (err) {
dev_err(&client->dev,
"output %u registration failed\n", i);
return err;
}
if (config[i].always_on)
clk_prepare(data->clk[i].hw.clk);
}
err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
data);
if (err) {
dev_err(&client->dev, "unable to add clk provider\n");
return err;
}
if (initialization_required) {
/* Synchronize */
regcache_cache_only(data->regmap, false);
err = regcache_sync(data->regmap);
if (err < 0)
return err;
err = si5341_finalize_defaults(data);
if (err < 0)
return err;
}
/* Free the names, clk framework makes copies */
for (i = 0; i < data->num_synth; ++i)
devm_kfree(&client->dev, (void *)synth_clock_names[i]);
return 0;
}
static const struct i2c_device_id si5341_id[] = {
{ "si5340", 0 },
{ "si5341", 1 },
{ }
};
MODULE_DEVICE_TABLE(i2c, si5341_id);
static const struct of_device_id clk_si5341_of_match[] = {
{ .compatible = "silabs,si5340" },
{ .compatible = "silabs,si5341" },
{ }
};
MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
static struct i2c_driver si5341_driver = {
.driver = {
.name = "si5341",
.of_match_table = clk_si5341_of_match,
},
.probe = si5341_probe,
.id_table = si5341_id,
};
module_i2c_driver(si5341_driver);
MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
MODULE_DESCRIPTION("Si5341 driver");
MODULE_LICENSE("GPL");