linux_dsm_epyc7002/drivers/media/tuners/mt2063.c

2304 lines
66 KiB
C
Raw Normal View History

/*
* Driver for mt2063 Micronas tuner
*
* Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
*
* This driver came from a driver originally written by:
* Henry Wang <Henry.wang@AzureWave.com>
* Made publicly available by Terratec, at:
* http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
* The original driver's license is GPL, as declared with MODULE_LICENSE()
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation under version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/videodev2.h>
#include "mt2063.h"
static unsigned int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Set Verbosity level");
#define dprintk(level, fmt, arg...) do { \
if (debug >= level) \
printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
} while (0)
/* positive error codes used internally */
/* Info: Unavoidable LO-related spur may be present in the output */
#define MT2063_SPUR_PRESENT_ERR (0x00800000)
/* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
#define MT2063_SPUR_CNT_MASK (0x001f0000)
#define MT2063_SPUR_SHIFT (16)
/* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
#define MT2063_UPC_RANGE (0x04000000)
/* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
#define MT2063_DNC_RANGE (0x08000000)
/*
* Constant defining the version of the following structure
* and therefore the API for this code.
*
* When compiling the tuner driver, the preprocessor will
* check against this version number to make sure that
* it matches the version that the tuner driver knows about.
*/
/* DECT Frequency Avoidance */
#define MT2063_DECT_AVOID_US_FREQS 0x00000001
#define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
enum MT2063_DECT_Avoid_Type {
MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
};
#define MT2063_MAX_ZONES 48
struct MT2063_ExclZone_t {
u32 min_;
u32 max_;
struct MT2063_ExclZone_t *next_;
};
/*
* Structure of data needed for Spur Avoidance
*/
struct MT2063_AvoidSpursData_t {
u32 f_ref;
u32 f_in;
u32 f_LO1;
u32 f_if1_Center;
u32 f_if1_Request;
u32 f_if1_bw;
u32 f_LO2;
u32 f_out;
u32 f_out_bw;
u32 f_LO1_Step;
u32 f_LO2_Step;
u32 f_LO1_FracN_Avoid;
u32 f_LO2_FracN_Avoid;
u32 f_zif_bw;
u32 f_min_LO_Separation;
u32 maxH1;
u32 maxH2;
enum MT2063_DECT_Avoid_Type avoidDECT;
u32 bSpurPresent;
u32 bSpurAvoided;
u32 nSpursFound;
u32 nZones;
struct MT2063_ExclZone_t *freeZones;
struct MT2063_ExclZone_t *usedZones;
struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
};
/*
* Parameter for function MT2063_SetPowerMask that specifies the power down
* of various sections of the MT2063.
*/
enum MT2063_Mask_Bits {
MT2063_REG_SD = 0x0040, /* Shutdown regulator */
MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
MT2063_NONE_SD = 0x0000 /* No shutdown bits */
};
/*
* Possible values for MT2063_DNC_OUTPUT
*/
enum MT2063_DNC_Output_Enable {
MT2063_DNC_NONE = 0,
MT2063_DNC_1,
MT2063_DNC_2,
MT2063_DNC_BOTH
};
/*
* Two-wire serial bus subaddresses of the tuner registers.
* Also known as the tuner's register addresses.
*/
enum MT2063_Register_Offsets {
MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
MT2063_REG_RSVD_06, /* 0x06: Reserved */
MT2063_REG_LO_STATUS, /* 0x07: LO Status */
MT2063_REG_FIFFC, /* 0x08: FIFF Center */
MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
MT2063_REG_RSVD_10, /* 0x10: Reserved */
MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
MT2063_REG_RSVD_20, /* 0x20: Reserved */
MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
MT2063_REG_RSVD_22, /* 0x22: Reserved */
MT2063_REG_RSVD_23, /* 0x23: Reserved */
MT2063_REG_RSVD_24, /* 0x24: Reserved */
MT2063_REG_RSVD_25, /* 0x25: Reserved */
MT2063_REG_RSVD_26, /* 0x26: Reserved */
MT2063_REG_RSVD_27, /* 0x27: Reserved */
MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
MT2063_REG_RSVD_31, /* 0x31: Reserved */
MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
MT2063_REG_RSVD_33, /* 0x33: Reserved */
MT2063_REG_RSVD_34, /* 0x34: Reserved */
MT2063_REG_RSVD_35, /* 0x35: Reserved */
MT2063_REG_RSVD_36, /* 0x36: Reserved */
MT2063_REG_RSVD_37, /* 0x37: Reserved */
MT2063_REG_RSVD_38, /* 0x38: Reserved */
MT2063_REG_RSVD_39, /* 0x39: Reserved */
MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
MT2063_REG_END_REGS
};
struct mt2063_state {
struct i2c_adapter *i2c;
bool init;
const struct mt2063_config *config;
struct dvb_tuner_ops ops;
struct dvb_frontend *frontend;
struct tuner_state status;
u32 frequency;
u32 srate;
u32 bandwidth;
u32 reference;
u32 tuner_id;
struct MT2063_AvoidSpursData_t AS_Data;
u32 f_IF1_actual;
u32 rcvr_mode;
u32 ctfilt_sw;
u32 CTFiltMax[31];
u32 num_regs;
u8 reg[MT2063_REG_END_REGS];
};
/*
* mt2063_write - Write data into the I2C bus
*/
static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
{
struct dvb_frontend *fe = state->frontend;
int ret;
u8 buf[60];
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = 0,
.buf = buf,
.len = len + 1
};
dprintk(2, "\n");
msg.buf[0] = reg;
memcpy(msg.buf + 1, data, len);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(state->i2c, &msg, 1);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (ret < 0)
printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
return ret;
}
/*
* mt2063_write - Write register data into the I2C bus, caching the value
*/
static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
{
int status;
dprintk(2, "\n");
if (reg >= MT2063_REG_END_REGS)
return -ERANGE;
status = mt2063_write(state, reg, &val, 1);
if (status < 0)
return status;
state->reg[reg] = val;
return 0;
}
/*
* mt2063_read - Read data from the I2C bus
*/
static int mt2063_read(struct mt2063_state *state,
u8 subAddress, u8 *pData, u32 cnt)
{
int status = 0; /* Status to be returned */
struct dvb_frontend *fe = state->frontend;
u32 i = 0;
dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
for (i = 0; i < cnt; i++) {
u8 b0[] = { subAddress + i };
struct i2c_msg msg[] = {
{
.addr = state->config->tuner_address,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = state->config->tuner_address,
.flags = I2C_M_RD,
.buf = pData + i,
.len = 1
}
};
status = i2c_transfer(state->i2c, msg, 2);
dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
subAddress + i, status, *(pData + i));
if (status < 0)
break;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (status < 0)
printk(KERN_ERR "Can't read from address 0x%02x,\n",
subAddress + i);
return status;
}
/*
* FIXME: Is this really needed?
*/
static int MT2063_Sleep(struct dvb_frontend *fe)
{
/*
* ToDo: Add code here to implement a OS blocking
*/
msleep(100);
return 0;
}
/*
* Microtune spur avoidance
*/
/* Implement ceiling, floor functions. */
#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
struct MT2063_FIFZone_t {
s32 min_;
s32 max_;
};
static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
*pAS_Info,
struct MT2063_ExclZone_t *pPrevNode)
{
struct MT2063_ExclZone_t *pNode;
dprintk(2, "\n");
/* Check for a node in the free list */
if (pAS_Info->freeZones != NULL) {
/* Use one from the free list */
pNode = pAS_Info->freeZones;
pAS_Info->freeZones = pNode->next_;
} else {
/* Grab a node from the array */
pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
}
if (pPrevNode != NULL) {
pNode->next_ = pPrevNode->next_;
pPrevNode->next_ = pNode;
} else { /* insert at the beginning of the list */
pNode->next_ = pAS_Info->usedZones;
pAS_Info->usedZones = pNode;
}
pAS_Info->nZones++;
return pNode;
}
static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
*pAS_Info,
struct MT2063_ExclZone_t *pPrevNode,
struct MT2063_ExclZone_t
*pNodeToRemove)
{
struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
dprintk(2, "\n");
/* Make previous node point to the subsequent node */
if (pPrevNode != NULL)
pPrevNode->next_ = pNext;
/* Add pNodeToRemove to the beginning of the freeZones */
pNodeToRemove->next_ = pAS_Info->freeZones;
pAS_Info->freeZones = pNodeToRemove;
/* Decrement node count */
pAS_Info->nZones--;
return pNext;
}
/*
* MT_AddExclZone()
*
* Add (and merge) an exclusion zone into the list.
* If the range (f_min, f_max) is totally outside the
* 1st IF BW, ignore the entry.
* If the range (f_min, f_max) is negative, ignore the entry.
*/
static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
u32 f_min, u32 f_max)
{
struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
struct MT2063_ExclZone_t *pPrev = NULL;
struct MT2063_ExclZone_t *pNext = NULL;
dprintk(2, "\n");
/* Check to see if this overlaps the 1st IF filter */
if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
&& (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
&& (f_min < f_max)) {
/*
* 1 2 3 4 5 6
*
* New entry: |---| |--| |--| |-| |---| |--|
* or or or or or
* Existing: |--| |--| |--| |---| |-| |--|
*/
/* Check for our place in the list */
while ((pNode != NULL) && (pNode->max_ < f_min)) {
pPrev = pNode;
pNode = pNode->next_;
}
if ((pNode != NULL) && (pNode->min_ < f_max)) {
/* Combine me with pNode */
if (f_min < pNode->min_)
pNode->min_ = f_min;
if (f_max > pNode->max_)
pNode->max_ = f_max;
} else {
pNode = InsertNode(pAS_Info, pPrev);
pNode->min_ = f_min;
pNode->max_ = f_max;
}
/* Look for merging possibilities */
pNext = pNode->next_;
while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
if (pNext->max_ > pNode->max_)
pNode->max_ = pNext->max_;
/* Remove pNext, return ptr to pNext->next */
pNext = RemoveNode(pAS_Info, pNode, pNext);
}
}
}
/*
* Reset all exclusion zones.
* Add zones to protect the PLL FracN regions near zero
*/
static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
{
u32 center;
dprintk(2, "\n");
pAS_Info->nZones = 0; /* this clears the used list */
pAS_Info->usedZones = NULL; /* reset ptr */
pAS_Info->freeZones = NULL; /* reset ptr */
center =
pAS_Info->f_ref *
((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
while (center <
pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
pAS_Info->f_LO1_FracN_Avoid) {
/* Exclude LO1 FracN */
MT2063_AddExclZone(pAS_Info,
center - pAS_Info->f_LO1_FracN_Avoid,
center - 1);
MT2063_AddExclZone(pAS_Info, center + 1,
center + pAS_Info->f_LO1_FracN_Avoid);
center += pAS_Info->f_ref;
}
center =
pAS_Info->f_ref *
((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
while (center <
pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
pAS_Info->f_LO2_FracN_Avoid) {
/* Exclude LO2 FracN */
MT2063_AddExclZone(pAS_Info,
center - pAS_Info->f_LO2_FracN_Avoid,
center - 1);
MT2063_AddExclZone(pAS_Info, center + 1,
center + pAS_Info->f_LO2_FracN_Avoid);
center += pAS_Info->f_ref;
}
if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
/* Exclude LO1 values that conflict with DECT channels */
MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
}
if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
}
}
/*
* MT_ChooseFirstIF - Choose the best available 1st IF
* If f_Desired is not excluded, choose that first.
* Otherwise, return the value closest to f_Center that is
* not excluded
*/
static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
{
/*
* Update "f_Desired" to be the nearest "combinational-multiple" of
* "f_LO1_Step".
* The resulting number, F_LO1 must be a multiple of f_LO1_Step.
* And F_LO1 is the arithmetic sum of f_in + f_Center.
* Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
* However, the sum must be.
*/
const u32 f_Desired =
pAS_Info->f_LO1_Step *
((pAS_Info->f_if1_Request + pAS_Info->f_in +
pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
pAS_Info->f_in;
const u32 f_Step =
(pAS_Info->f_LO1_Step >
pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
f_LO2_Step;
u32 f_Center;
s32 i;
s32 j = 0;
u32 bDesiredExcluded = 0;
u32 bZeroExcluded = 0;
s32 tmpMin, tmpMax;
s32 bestDiff;
struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
dprintk(2, "\n");
if (pAS_Info->nZones == 0)
return f_Desired;
/*
* f_Center needs to be an integer multiple of f_Step away
* from f_Desired
*/
if (pAS_Info->f_if1_Center > f_Desired)
f_Center =
f_Desired +
f_Step *
((pAS_Info->f_if1_Center - f_Desired +
f_Step / 2) / f_Step);
else
f_Center =
f_Desired -
f_Step *
((f_Desired - pAS_Info->f_if1_Center +
f_Step / 2) / f_Step);
/*
* Take MT_ExclZones, center around f_Center and change the
* resolution to f_Step
*/
while (pNode != NULL) {
/* floor function */
tmpMin =
floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
/* ceil function */
tmpMax =
ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
bDesiredExcluded = 1;
if ((tmpMin < 0) && (tmpMax > 0))
bZeroExcluded = 1;
/* See if this zone overlaps the previous */
if ((j > 0) && (tmpMin < zones[j - 1].max_))
zones[j - 1].max_ = tmpMax;
else {
/* Add new zone */
zones[j].min_ = tmpMin;
zones[j].max_ = tmpMax;
j++;
}
pNode = pNode->next_;
}
/*
* If the desired is okay, return with it
*/
if (bDesiredExcluded == 0)
return f_Desired;
/*
* If the desired is excluded and the center is okay, return with it
*/
if (bZeroExcluded == 0)
return f_Center;
/* Find the value closest to 0 (f_Center) */
bestDiff = zones[0].min_;
for (i = 0; i < j; i++) {
if (abs(zones[i].min_) < abs(bestDiff))
bestDiff = zones[i].min_;
if (abs(zones[i].max_) < abs(bestDiff))
bestDiff = zones[i].max_;
}
if (bestDiff < 0)
return f_Center - ((u32) (-bestDiff) * f_Step);
return f_Center + (bestDiff * f_Step);
}
/**
* gcd() - Uses Euclid's algorithm
*
* @u, @v: Unsigned values whose GCD is desired.
*
* Returns THE greatest common divisor of u and v, if either value is 0,
* the other value is returned as the result.
*/
static u32 MT2063_gcd(u32 u, u32 v)
{
u32 r;
while (v != 0) {
r = u % v;
u = v;
v = r;
}
return u;
}
/**
* IsSpurInBand() - Checks to see if a spur will be present within the IF's
* bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
*
* ma mb mc md
* <--+-+-+-------------------+-------------------+-+-+-->
* | ^ 0 ^ |
* ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
* a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
*
* Note that some equations are doubled to prevent round-off
* problems when calculating fIFBW/2
*
* @pAS_Info: Avoid Spurs information block
* @fm: If spur, amount f_IF1 has to move negative
* @fp: If spur, amount f_IF1 has to move positive
*
* Returns 1 if an LO spur would be present, otherwise 0.
*/
static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
u32 *fm, u32 * fp)
{
/*
** Calculate LO frequency settings.
*/
u32 n, n0;
const u32 f_LO1 = pAS_Info->f_LO1;
const u32 f_LO2 = pAS_Info->f_LO2;
const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
const u32 c = d - pAS_Info->f_out_bw;
const u32 f = pAS_Info->f_zif_bw / 2;
const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
s32 f_nsLO1, f_nsLO2;
s32 f_Spur;
u32 ma, mb, mc, md, me, mf;
u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
dprintk(2, "\n");
*fm = 0;
/*
** For each edge (d, c & f), calculate a scale, based on the gcd
** of f_LO1, f_LO2 and the edge value. Use the larger of this
** gcd-based scale factor or f_Scale.
*/
lo_gcd = MT2063_gcd(f_LO1, f_LO2);
gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
hgds = gd_Scale / 2;
gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
hgcs = gc_Scale / 2;
gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
hgfs = gf_Scale / 2;
n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
/* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
for (n = n0; n <= pAS_Info->maxH1; ++n) {
md = (n * ((f_LO1 + hgds) / gd_Scale) -
((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
/* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
if (md >= pAS_Info->maxH1)
break;
ma = (n * ((f_LO1 + hgds) / gd_Scale) +
((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
/* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
if (md == ma)
continue;
mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
if (mc != md) {
f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
f_Spur =
(gc_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
*fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
*fm = (((s32) d - f_Spur) / (mc - n)) + 1;
return 1;
}
/* Location of Zero-IF-spur to be checked */
me = (n * ((f_LO1 + hgfs) / gf_Scale) +
((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
if (me != mf) {
f_nsLO1 = n * (f_LO1 / gf_Scale);
f_nsLO2 = me * (f_LO2 / gf_Scale);
f_Spur =
(gf_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
*fp = ((f_Spur + (s32) f) / (me - n)) + 1;
*fm = (((s32) f - f_Spur) / (me - n)) + 1;
return 1;
}
mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
if (ma != mb) {
f_nsLO1 = n * (f_LO1 / gc_Scale);
f_nsLO2 = ma * (f_LO2 / gc_Scale);
f_Spur =
(gc_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
*fp = (((s32) d + f_Spur) / (ma - n)) + 1;
*fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
return 1;
}
}
/* No spurs found */
return 0;
}
/*
* MT_AvoidSpurs() - Main entry point to avoid spurs.
* Checks for existing spurs in present LO1, LO2 freqs
* and if present, chooses spur-free LO1, LO2 combination
* that tunes the same input/output frequencies.
*/
static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
{
int status = 0;
u32 fm, fp; /* restricted range on LO's */
pAS_Info->bSpurAvoided = 0;
pAS_Info->nSpursFound = 0;
dprintk(2, "\n");
if (pAS_Info->maxH1 == 0)
return 0;
/*
* Avoid LO Generated Spurs
*
* Make sure that have no LO-related spurs within the IF output
* bandwidth.
*
* If there is an LO spur in this band, start at the current IF1 frequency
* and work out until we find a spur-free frequency or run up against the
* 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
* will be unchanged if a spur-free setting is not found.
*/
pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
if (pAS_Info->bSpurPresent) {
u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
u32 delta_IF1;
u32 new_IF1;
/*
** Spur was found, attempt to find a spur-free 1st IF
*/
do {
pAS_Info->nSpursFound++;
/* Raise f_IF1_upper, if needed */
MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
/* Choose next IF1 that is closest to f_IF1_CENTER */
new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
if (new_IF1 > zfIF1) {
pAS_Info->f_LO1 += (new_IF1 - zfIF1);
pAS_Info->f_LO2 += (new_IF1 - zfIF1);
} else {
pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
}
zfIF1 = new_IF1;
if (zfIF1 > pAS_Info->f_if1_Center)
delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
else
delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
/*
* Continue while the new 1st IF is still within the 1st IF bandwidth
* and there is a spur in the band (again)
*/
} while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
/*
* Use the LO-spur free values found. If the search went all
* the way to the 1st IF band edge and always found spurs, just
* leave the original choice. It's as "good" as any other.
*/
if (pAS_Info->bSpurPresent == 1) {
status |= MT2063_SPUR_PRESENT_ERR;
pAS_Info->f_LO1 = zfLO1;
pAS_Info->f_LO2 = zfLO2;
} else
pAS_Info->bSpurAvoided = 1;
}
status |=
((pAS_Info->
nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
return status;
}
/*
* Constants used by the tuning algorithm
*/
#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
/*
* Define the supported Part/Rev codes for the MT2063
*/
#define MT2063_B0 (0x9B)
#define MT2063_B1 (0x9C)
#define MT2063_B2 (0x9D)
#define MT2063_B3 (0x9E)
/**
* mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
*
* @state: struct mt2063_state pointer
*
* This function returns 0, if no lock, 1 if locked and a value < 1 if error
*/
static int mt2063_lockStatus(struct mt2063_state *state)
{
const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
const u32 nPollRate = 2; /* poll status bits every 2 ms */
const u32 nMaxLoops = nMaxWait / nPollRate;
const u8 LO1LK = 0x80;
u8 LO2LK = 0x08;
int status;
u32 nDelays = 0;
dprintk(2, "\n");
/* LO2 Lock bit was in a different place for B0 version */
if (state->tuner_id == MT2063_B0)
LO2LK = 0x40;
do {
status = mt2063_read(state, MT2063_REG_LO_STATUS,
&state->reg[MT2063_REG_LO_STATUS], 1);
if (status < 0)
return status;
if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
(LO1LK | LO2LK)) {
return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
}
msleep(nPollRate); /* Wait between retries */
} while (++nDelays < nMaxLoops);
/*
* Got no lock or partial lock
*/
return 0;
}
/*
* Constants for setting receiver modes.
* (6 modes defined at this time, enumerated by mt2063_delivery_sys)
* (DNC1GC & DNC2GC are the values, which are used, when the specific
* DNC Output is selected, the other is always off)
*
* enum mt2063_delivery_sys
* -------------+----------------------------------------------
* Mode 0 : | MT2063_CABLE_QAM
* Mode 1 : | MT2063_CABLE_ANALOG
* Mode 2 : | MT2063_OFFAIR_COFDM
* Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
* Mode 4 : | MT2063_OFFAIR_ANALOG
* Mode 5 : | MT2063_OFFAIR_8VSB
* --------------+----------------------------------------------
*
* |<---------- Mode -------------->|
* Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
* ------------+-----+-----+-----+-----+-----+-----+
* RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
* LNARin | 0 | 0 | 3 | 3 | 3 | 3
* FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
* FIFFq | 0 | 0 | 0 | 0 | 0 | 0
* DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
* DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
* GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
* LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
* LNA Target | 44 | 43 | 43 | 43 | 43 | 43
* ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
* RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
* PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
* ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
* FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
* PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
*/
enum mt2063_delivery_sys {
MT2063_CABLE_QAM = 0,
MT2063_CABLE_ANALOG,
MT2063_OFFAIR_COFDM,
MT2063_OFFAIR_COFDM_SAWLESS,
MT2063_OFFAIR_ANALOG,
MT2063_OFFAIR_8VSB,
MT2063_NUM_RCVR_MODES
};
static const char *mt2063_mode_name[] = {
[MT2063_CABLE_QAM] = "digital cable",
[MT2063_CABLE_ANALOG] = "analog cable",
[MT2063_OFFAIR_COFDM] = "digital offair",
[MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
[MT2063_OFFAIR_ANALOG] = "analog offair",
[MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
};
static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
/*
* mt2063_set_dnc_output_enable()
*/
static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
enum MT2063_DNC_Output_Enable *pValue)
{
dprintk(2, "\n");
if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
*pValue = MT2063_DNC_NONE;
else
*pValue = MT2063_DNC_2;
} else { /* DNC1 is on */
if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
*pValue = MT2063_DNC_1;
else
*pValue = MT2063_DNC_BOTH;
}
return 0;
}
/*
* mt2063_set_dnc_output_enable()
*/
static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
enum MT2063_DNC_Output_Enable nValue)
{
int status = 0; /* Status to be returned */
u8 val = 0;
dprintk(2, "\n");
/* selects, which DNC output is used */
switch (nValue) {
case MT2063_DNC_NONE:
val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
if (state->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_DNC_GAIN,
val);
val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
if (state->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_VGA_GAIN,
val);
val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
if (state->reg[MT2063_REG_RSVD_20] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_RSVD_20,
val);
break;
case MT2063_DNC_1:
val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
if (state->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_DNC_GAIN,
val);
val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
if (state->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_VGA_GAIN,
val);
val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
if (state->reg[MT2063_REG_RSVD_20] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_RSVD_20,
val);
break;
case MT2063_DNC_2:
val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
if (state->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_DNC_GAIN,
val);
val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
if (state->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_VGA_GAIN,
val);
val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
if (state->reg[MT2063_REG_RSVD_20] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_RSVD_20,
val);
break;
case MT2063_DNC_BOTH:
val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
if (state->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_DNC_GAIN,
val);
val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
if (state->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_VGA_GAIN,
val);
val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
if (state->reg[MT2063_REG_RSVD_20] !=
val)
status |=
mt2063_setreg(state,
MT2063_REG_RSVD_20,
val);
break;
default:
break;
}
return status;
}
/*
* MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
* the selected enum mt2063_delivery_sys type.
*
* (DNC1GC & DNC2GC are the values, which are used, when the specific
* DNC Output is selected, the other is always off)
*
* @state: ptr to mt2063_state structure
* @Mode: desired reciever delivery system
*
* Note: Register cache must be valid for it to work
*/
static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
enum mt2063_delivery_sys Mode)
{
int status = 0; /* Status to be returned */
u8 val;
u32 longval;
dprintk(2, "\n");
if (Mode >= MT2063_NUM_RCVR_MODES)
status = -ERANGE;
/* RFAGCen */
if (status >= 0) {
val =
(state->
reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode]
? 0x40 :
0x00);
if (state->reg[MT2063_REG_PD1_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
}
/* LNARin */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) |
(LNARIN[Mode] & 0x03);
if (state->reg[MT2063_REG_CTRL_2C] != val)
status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
}
/* FIFFQEN and FIFFQ */
if (status >= 0) {
val =
(state->
reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) |
(FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
status |=
mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
/* trigger FIFF calibration, needed after changing FIFFQ */
val =
(state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
status |=
mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
val =
(state->
reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01);
status |=
mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
}
}
/* DNC1GC & DNC2GC */
status |= mt2063_get_dnc_output_enable(state, &longval);
status |= mt2063_set_dnc_output_enable(state, longval);
/* acLNAmax */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) |
(ACLNAMAX[Mode] & 0x1F);
if (state->reg[MT2063_REG_LNA_OV] != val)
status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
}
/* LNATGT */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) |
(LNATGT[Mode] & 0x3F);
if (state->reg[MT2063_REG_LNA_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
}
/* ACRF */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) |
(ACRFMAX[Mode] & 0x1F);
if (state->reg[MT2063_REG_RF_OV] != val)
status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
}
/* PD1TGT */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) |
(PD1TGT[Mode] & 0x3F);
if (state->reg[MT2063_REG_PD1_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
}
/* FIFATN */
if (status >= 0) {
u8 val = ACFIFMAX[Mode];
if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
val = 5;
val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) |
(val & 0x1F);
if (state->reg[MT2063_REG_FIF_OV] != val)
status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
}
/* PD2TGT */
if (status >= 0) {
u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) |
(PD2TGT[Mode] & 0x3F);
if (state->reg[MT2063_REG_PD2_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
}
/* Ignore ATN Overload */
if (status >= 0) {
val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) |
(RFOVDIS[Mode] ? 0x80 : 0x00);
if (state->reg[MT2063_REG_LNA_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
}
/* Ignore FIF Overload */
if (status >= 0) {
val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) |
(FIFOVDIS[Mode] ? 0x80 : 0x00);
if (state->reg[MT2063_REG_PD1_TGT] != val)
status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
}
if (status >= 0) {
state->rcvr_mode = Mode;
dprintk(1, "mt2063 mode changed to %s\n",
mt2063_mode_name[state->rcvr_mode]);
}
return status;
}
/*
* MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
* sections of the MT2063
*
* @Bits: Mask bits to be cleared.
*
* See definition of MT2063_Mask_Bits type for description
* of each of the power bits.
*/
static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
enum MT2063_Mask_Bits Bits)
{
int status = 0;
dprintk(2, "\n");
Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */
if ((Bits & 0xFF00) != 0) {
state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
status |=
mt2063_write(state,
MT2063_REG_PWR_2,
&state->reg[MT2063_REG_PWR_2], 1);
}
if ((Bits & 0xFF) != 0) {
state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
status |=
mt2063_write(state,
MT2063_REG_PWR_1,
&state->reg[MT2063_REG_PWR_1], 1);
}
return status;
}
/*
* MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
* When Shutdown is 1, any section whose power
* mask is set will be shutdown.
*/
static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
{
int status;
dprintk(2, "\n");
if (Shutdown == 1)
state->reg[MT2063_REG_PWR_1] |= 0x04;
else
state->reg[MT2063_REG_PWR_1] &= ~0x04;
status = mt2063_write(state,
MT2063_REG_PWR_1,
&state->reg[MT2063_REG_PWR_1], 1);
if (Shutdown != 1) {
state->reg[MT2063_REG_BYP_CTRL] =
(state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
status |=
mt2063_write(state,
MT2063_REG_BYP_CTRL,
&state->reg[MT2063_REG_BYP_CTRL],
1);
state->reg[MT2063_REG_BYP_CTRL] =
(state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
status |=
mt2063_write(state,
MT2063_REG_BYP_CTRL,
&state->reg[MT2063_REG_BYP_CTRL],
1);
}
return status;
}
static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
{
return f_ref * (f_LO / f_ref)
+ f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
}
/**
* fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
* This function preserves maximum precision without
* risk of overflow. It accurately calculates
* f_ref * num / denom to within 1 HZ with fixed math.
*
* @num : Fractional portion of the multiplier
* @denom: denominator portion of the ratio
* @f_Ref: SRO frequency.
*
* This calculation handles f_ref as two separate 14-bit fields.
* Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
* This is the genesis of the magic number "14" and the magic mask value of
* 0x03FFF.
*
* This routine successfully handles denom values up to and including 2^18.
* Returns: f_ref * num / denom
*/
static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
{
u32 t1 = (f_ref >> 14) * num;
u32 term1 = t1 / denom;
u32 loss = t1 % denom;
u32 term2 =
(((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
return (term1 << 14) + term2;
}
/*
* CalcLO1Mult()- Calculates Integer divider value and the numerator
* value for a FracN PLL.
*
* This function assumes that the f_LO and f_Ref are
* evenly divisible by f_LO_Step.
*
* @Div: OUTPUT: Whole number portion of the multiplier
* @FracN: OUTPUT: Fractional portion of the multiplier
* @f_LO: desired LO frequency.
* @f_LO_Step: Minimum step size for the LO (in Hz).
* @f_Ref: SRO frequency.
* @f_Avoid: Range of PLL frequencies to avoid near integer multiples
* of f_Ref (in Hz).
*
* Returns: Recalculated LO frequency.
*/
static u32 MT2063_CalcLO1Mult(u32 *Div,
u32 *FracN,
u32 f_LO,
u32 f_LO_Step, u32 f_Ref)
{
/* Calculate the whole number portion of the divider */
*Div = f_LO / f_Ref;
/* Calculate the numerator value (round to nearest f_LO_Step) */
*FracN =
(64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
(f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
}
/**
* CalcLO2Mult() - Calculates Integer divider value and the numerator
* value for a FracN PLL.
*
* This function assumes that the f_LO and f_Ref are
* evenly divisible by f_LO_Step.
*
* @Div: OUTPUT: Whole number portion of the multiplier
* @FracN: OUTPUT: Fractional portion of the multiplier
* @f_LO: desired LO frequency.
* @f_LO_Step: Minimum step size for the LO (in Hz).
* @f_Ref: SRO frequency.
* @f_Avoid: Range of PLL frequencies to avoid near
* integer multiples of f_Ref (in Hz).
*
* Returns: Recalculated LO frequency.
*/
static u32 MT2063_CalcLO2Mult(u32 *Div,
u32 *FracN,
u32 f_LO,
u32 f_LO_Step, u32 f_Ref)
{
/* Calculate the whole number portion of the divider */
*Div = f_LO / f_Ref;
/* Calculate the numerator value (round to nearest f_LO_Step) */
*FracN =
(8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
(f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
8191);
}
/*
* FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
* used for a given input frequency.
*
* @state: ptr to tuner data structure
* @f_in: RF input center frequency (in Hz).
*
* Returns: ClearTune filter number (0-31)
*/
static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
{
u32 RFBand;
u32 idx; /* index loop */
/*
** Find RF Band setting
*/
RFBand = 31; /* def when f_in > all */
for (idx = 0; idx < 31; ++idx) {
if (state->CTFiltMax[idx] >= f_in) {
RFBand = idx;
break;
}
}
return RFBand;
}
/*
* MT2063_Tune() - Change the tuner's tuned frequency to RFin.
*/
static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
{ /* RF input center frequency */
int status = 0;
u32 LO1; /* 1st LO register value */
u32 Num1; /* Numerator for LO1 reg. value */
u32 f_IF1; /* 1st IF requested */
u32 LO2; /* 2nd LO register value */
u32 Num2; /* Numerator for LO2 reg. value */
u32 ofLO1, ofLO2; /* last time's LO frequencies */
u8 fiffc = 0x80; /* FIFF center freq from tuner */
u32 fiffof; /* Offset from FIFF center freq */
const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
u8 val;
u32 RFBand;
dprintk(2, "\n");
/* Check the input and output frequency ranges */
if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
return -EINVAL;
if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
|| (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
return -EINVAL;
/*
* Save original LO1 and LO2 register values
*/
ofLO1 = state->AS_Data.f_LO1;
ofLO2 = state->AS_Data.f_LO2;
/*
* Find and set RF Band setting
*/
if (state->ctfilt_sw == 1) {
val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
status |=
mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
}
val = state->reg[MT2063_REG_CTUNE_OV];
RFBand = FindClearTuneFilter(state, f_in);
state->reg[MT2063_REG_CTUNE_OV] =
(u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
| RFBand);
if (state->reg[MT2063_REG_CTUNE_OV] != val) {
status |=
mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
}
}
/*
* Read the FIFF Center Frequency from the tuner
*/
if (status >= 0) {
status |=
mt2063_read(state,
MT2063_REG_FIFFC,
&state->reg[MT2063_REG_FIFFC], 1);
fiffc = state->reg[MT2063_REG_FIFFC];
}
/*
* Assign in the requested values
*/
state->AS_Data.f_in = f_in;
/* Request a 1st IF such that LO1 is on a step size */
state->AS_Data.f_if1_Request =
MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
state->AS_Data.f_LO1_Step,
state->AS_Data.f_ref) - f_in;
/*
* Calculate frequency settings. f_IF1_FREQ + f_in is the
* desired LO1 frequency
*/
MT2063_ResetExclZones(&state->AS_Data);
f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
state->AS_Data.f_LO1 =
MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
state->AS_Data.f_ref);
state->AS_Data.f_LO2 =
MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
/*
* Check for any LO spurs in the output bandwidth and adjust
* the LO settings to avoid them if needed
*/
status |= MT2063_AvoidSpurs(&state->AS_Data);
/*
* MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
* Recalculate the LO frequencies and the values to be placed
* in the tuning registers.
*/
state->AS_Data.f_LO1 =
MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
state->AS_Data.f_LO2 =
MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
state->AS_Data.f_LO2 =
MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
/*
* Check the upconverter and downconverter frequency ranges
*/
if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
|| (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
status |= MT2063_UPC_RANGE;
if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
|| (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
status |= MT2063_DNC_RANGE;
/* LO2 Lock bit was in a different place for B0 version */
if (state->tuner_id == MT2063_B0)
LO2LK = 0x40;
/*
* If we have the same LO frequencies and we're already locked,
* then skip re-programming the LO registers.
*/
if ((ofLO1 != state->AS_Data.f_LO1)
|| (ofLO2 != state->AS_Data.f_LO2)
|| ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
(LO1LK | LO2LK))) {
/*
* Calculate the FIFFOF register value
*
* IF1_Actual
* FIFFOF = ------------ - 8 * FIFFC - 4992
* f_ref/64
*/
fiffof =
(state->AS_Data.f_LO1 -
f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
4992;
if (fiffof > 0xFF)
fiffof = 0xFF;
/*
* Place all of the calculated values into the local tuner
* register fields.
*/
if (status >= 0) {
state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */
state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */
state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */
|(Num2 >> 12)); /* NUM2q (hi) */
state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */
state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
/*
* Now write out the computed register values
* IMPORTANT: There is a required order for writing
* (0x05 must follow all the others).
*/
status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
if (state->tuner_id == MT2063_B0) {
/* Re-write the one-shot bits to trigger the tune operation */
status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
}
/* Write out the FIFF offset only if it's changing */
if (state->reg[MT2063_REG_FIFF_OFFSET] !=
(u8) fiffof) {
state->reg[MT2063_REG_FIFF_OFFSET] =
(u8) fiffof;
status |=
mt2063_write(state,
MT2063_REG_FIFF_OFFSET,
&state->
reg[MT2063_REG_FIFF_OFFSET],
1);
}
}
/*
* Check for LO's locking
*/
if (status < 0)
return status;
status = mt2063_lockStatus(state);
if (status < 0)
return status;
if (!status)
return -EINVAL; /* Couldn't lock */
/*
* If we locked OK, assign calculated data to mt2063_state structure
*/
state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
}
return status;
}
static const u8 MT2063B0_defaults[] = {
/* Reg, Value */
0x19, 0x05,
0x1B, 0x1D,
0x1C, 0x1F,
0x1D, 0x0F,
0x1E, 0x3F,
0x1F, 0x0F,
0x20, 0x3F,
0x22, 0x21,
0x23, 0x3F,
0x24, 0x20,
0x25, 0x3F,
0x27, 0xEE,
0x2C, 0x27, /* bit at 0x20 is cleared below */
0x30, 0x03,
0x2C, 0x07, /* bit at 0x20 is cleared here */
0x2D, 0x87,
0x2E, 0xAA,
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B1_defaults[] = {
/* Reg, Value */
0x05, 0xF0,
0x11, 0x10, /* New Enable AFCsd */
0x19, 0x05,
0x1A, 0x6C,
0x1B, 0x24,
0x1C, 0x28,
0x1D, 0x8F,
0x1E, 0x14,
0x1F, 0x8F,
0x20, 0x57,
0x22, 0x21, /* New - ver 1.03 */
0x23, 0x3C, /* New - ver 1.10 */
0x24, 0x20, /* New - ver 1.03 */
0x2C, 0x24, /* bit at 0x20 is cleared below */
0x2D, 0x87, /* FIFFQ=0 */
0x2F, 0xF3,
0x30, 0x0C, /* New - ver 1.11 */
0x31, 0x1B, /* New - ver 1.11 */
0x2C, 0x04, /* bit at 0x20 is cleared here */
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B3_defaults[] = {
/* Reg, Value */
0x05, 0xF0,
0x19, 0x3D,
0x2C, 0x24, /* bit at 0x20 is cleared below */
0x2C, 0x04, /* bit at 0x20 is cleared here */
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
static int mt2063_init(struct dvb_frontend *fe)
{
int status;
struct mt2063_state *state = fe->tuner_priv;
u8 all_resets = 0xF0; /* reset/load bits */
const u8 *def = NULL;
char *step;
u32 FCRUN;
s32 maxReads;
u32 fcu_osc;
u32 i;
dprintk(2, "\n");
state->rcvr_mode = MT2063_CABLE_QAM;
/* Read the Part/Rev code from the tuner */
status = mt2063_read(state, MT2063_REG_PART_REV,
&state->reg[MT2063_REG_PART_REV], 1);
if (status < 0) {
printk(KERN_ERR "Can't read mt2063 part ID\n");
return status;
}
/* Check the part/rev code */
switch (state->reg[MT2063_REG_PART_REV]) {
case MT2063_B0:
step = "B0";
break;
case MT2063_B1:
step = "B1";
break;
case MT2063_B2:
step = "B2";
break;
case MT2063_B3:
step = "B3";
break;
default:
printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
state->reg[MT2063_REG_PART_REV]);
return -ENODEV; /* Wrong tuner Part/Rev code */
}
/* Check the 2nd byte of the Part/Rev code from the tuner */
status = mt2063_read(state, MT2063_REG_RSVD_3B,
&state->reg[MT2063_REG_RSVD_3B], 1);
/* b7 != 0 ==> NOT MT2063 */
if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
state->reg[MT2063_REG_PART_REV],
state->reg[MT2063_REG_RSVD_3B]);
return -ENODEV; /* Wrong tuner Part/Rev code */
}
printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
/* Reset the tuner */
status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
if (status < 0)
return status;
/* change all of the default values that vary from the HW reset values */
/* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
switch (state->reg[MT2063_REG_PART_REV]) {
case MT2063_B3:
def = MT2063B3_defaults;
break;
case MT2063_B1:
def = MT2063B1_defaults;
break;
case MT2063_B0:
def = MT2063B0_defaults;
break;
default:
return -ENODEV;
break;
}
while (status >= 0 && *def) {
u8 reg = *def++;
u8 val = *def++;
status = mt2063_write(state, reg, &val, 1);
}
if (status < 0)
return status;
/* Wait for FIFF location to complete. */
FCRUN = 1;
maxReads = 10;
while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
msleep(2);
status = mt2063_read(state,
MT2063_REG_XO_STATUS,
&state->
reg[MT2063_REG_XO_STATUS], 1);
FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
}
if (FCRUN != 0 || status < 0)
return -ENODEV;
status = mt2063_read(state,
MT2063_REG_FIFFC,
&state->reg[MT2063_REG_FIFFC], 1);
if (status < 0)
return status;
/* Read back all the registers from the tuner */
status = mt2063_read(state,
MT2063_REG_PART_REV,
state->reg, MT2063_REG_END_REGS);
if (status < 0)
return status;
/* Initialize the tuner state. */
state->tuner_id = state->reg[MT2063_REG_PART_REV];
state->AS_Data.f_ref = MT2063_REF_FREQ;
state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
((u32) state->reg[MT2063_REG_FIFFC] + 640);
state->AS_Data.f_if1_bw = MT2063_IF1_BW;
state->AS_Data.f_out = 43750000UL;
state->AS_Data.f_out_bw = 6750000UL;
state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
state->AS_Data.f_LO1 = 2181000000UL;
state->AS_Data.f_LO2 = 1486249786UL;
state->f_IF1_actual = state->AS_Data.f_if1_Center;
state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
state->num_regs = MT2063_REG_END_REGS;
state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
state->ctfilt_sw = 0;
state->CTFiltMax[0] = 69230000;
state->CTFiltMax[1] = 105770000;
state->CTFiltMax[2] = 140350000;
state->CTFiltMax[3] = 177110000;
state->CTFiltMax[4] = 212860000;
state->CTFiltMax[5] = 241130000;
state->CTFiltMax[6] = 274370000;
state->CTFiltMax[7] = 309820000;
state->CTFiltMax[8] = 342450000;
state->CTFiltMax[9] = 378870000;
state->CTFiltMax[10] = 416210000;
state->CTFiltMax[11] = 456500000;
state->CTFiltMax[12] = 495790000;
state->CTFiltMax[13] = 534530000;
state->CTFiltMax[14] = 572610000;
state->CTFiltMax[15] = 598970000;
state->CTFiltMax[16] = 635910000;
state->CTFiltMax[17] = 672130000;
state->CTFiltMax[18] = 714840000;
state->CTFiltMax[19] = 739660000;
state->CTFiltMax[20] = 770410000;
state->CTFiltMax[21] = 814660000;
state->CTFiltMax[22] = 846950000;
state->CTFiltMax[23] = 867820000;
state->CTFiltMax[24] = 915980000;
state->CTFiltMax[25] = 947450000;
state->CTFiltMax[26] = 983110000;
state->CTFiltMax[27] = 1021630000;
state->CTFiltMax[28] = 1061870000;
state->CTFiltMax[29] = 1098330000;
state->CTFiltMax[30] = 1138990000;
/*
** Fetch the FCU osc value and use it and the fRef value to
** scale all of the Band Max values
*/
state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
&state->reg[MT2063_REG_CTUNE_CTRL], 1);
if (status < 0)
return status;
/* Read the ClearTune filter calibration value */
status = mt2063_read(state, MT2063_REG_FIFFC,
&state->reg[MT2063_REG_FIFFC], 1);
if (status < 0)
return status;
fcu_osc = state->reg[MT2063_REG_FIFFC];
state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
&state->reg[MT2063_REG_CTUNE_CTRL], 1);
if (status < 0)
return status;
/* Adjust each of the values in the ClearTune filter cross-over table */
for (i = 0; i < 31; i++)
state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
status = MT2063_SoftwareShutdown(state, 1);
if (status < 0)
return status;
status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
if (status < 0)
return status;
state->init = true;
return 0;
}
static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
{
struct mt2063_state *state = fe->tuner_priv;
int status;
dprintk(2, "\n");
if (!state->init)
return -ENODEV;
*tuner_status = 0;
status = mt2063_lockStatus(state);
if (status < 0)
return status;
if (status)
*tuner_status = TUNER_STATUS_LOCKED;
dprintk(1, "Tuner status: %d", *tuner_status);
return 0;
}
static int mt2063_release(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
dprintk(2, "\n");
fe->tuner_priv = NULL;
kfree(state);
return 0;
}
static int mt2063_set_analog_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct mt2063_state *state = fe->tuner_priv;
s32 pict_car;
s32 pict2chanb_vsb;
s32 ch_bw;
s32 if_mid;
s32 rcvr_mode;
int status;
dprintk(2, "\n");
if (!state->init) {
status = mt2063_init(fe);
if (status < 0)
return status;
}
switch (params->mode) {
case V4L2_TUNER_RADIO:
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -(ch_bw / 2);
rcvr_mode = MT2063_OFFAIR_ANALOG;
break;
case V4L2_TUNER_ANALOG_TV:
rcvr_mode = MT2063_CABLE_ANALOG;
if (params->std & ~V4L2_STD_MN) {
pict_car = 38900000;
ch_bw = 6000000;
pict2chanb_vsb = -1250000;
} else if (params->std & V4L2_STD_PAL_G) {
pict_car = 38900000;
ch_bw = 7000000;
pict2chanb_vsb = -1250000;
} else { /* PAL/SECAM standards */
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -1250000;
}
break;
default:
return -EINVAL;
}
if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
state->AS_Data.f_out = if_mid;
state->AS_Data.f_out_bw = ch_bw + 750000;
status = MT2063_SetReceiverMode(state, rcvr_mode);
if (status < 0)
return status;
dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
params->frequency, ch_bw, pict2chanb_vsb);
status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
if (status < 0)
return status;
state->frequency = params->frequency;
return 0;
}
/*
* As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
* So, the amount of the needed bandwith is given by:
* Bw = Symbol_rate * (1 + 0.15)
* As such, the maximum symbol rate supported by 6 MHz is given by:
* max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
*/
#define MAX_SYMBOL_RATE_6MHz 5217391
static int mt2063_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct mt2063_state *state = fe->tuner_priv;
int status;
s32 pict_car;
s32 pict2chanb_vsb;
s32 ch_bw;
s32 if_mid;
s32 rcvr_mode;
if (!state->init) {
status = mt2063_init(fe);
if (status < 0)
return status;
}
dprintk(2, "\n");
if (c->bandwidth_hz == 0)
return -EINVAL;
if (c->bandwidth_hz <= 6000000)
ch_bw = 6000000;
else if (c->bandwidth_hz <= 7000000)
ch_bw = 7000000;
else
ch_bw = 8000000;
switch (c->delivery_system) {
case SYS_DVBT:
rcvr_mode = MT2063_OFFAIR_COFDM;
pict_car = 36125000;
pict2chanb_vsb = -(ch_bw / 2);
break;
case SYS_DVBC_ANNEX_A:
case SYS_DVBC_ANNEX_C:
rcvr_mode = MT2063_CABLE_QAM;
pict_car = 36125000;
pict2chanb_vsb = -(ch_bw / 2);
break;
default:
return -EINVAL;
}
if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
state->AS_Data.f_out = if_mid;
state->AS_Data.f_out_bw = ch_bw + 750000;
status = MT2063_SetReceiverMode(state, rcvr_mode);
if (status < 0)
return status;
dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
c->frequency, ch_bw, pict2chanb_vsb);
status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
if (status < 0)
return status;
state->frequency = c->frequency;
return 0;
}
static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
{
struct mt2063_state *state = fe->tuner_priv;
dprintk(2, "\n");
if (!state->init)
return -ENODEV;
*freq = state->AS_Data.f_out;
dprintk(1, "IF frequency: %d\n", *freq);
return 0;
}
static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
struct mt2063_state *state = fe->tuner_priv;
dprintk(2, "\n");
if (!state->init)
return -ENODEV;
*bw = state->AS_Data.f_out_bw - 750000;
dprintk(1, "bandwidth: %d\n", *bw);
return 0;
}
static struct dvb_tuner_ops mt2063_ops = {
.info = {
.name = "MT2063 Silicon Tuner",
.frequency_min = 45000000,
.frequency_max = 865000000,
.frequency_step = 0,
},
.init = mt2063_init,
.sleep = MT2063_Sleep,
.get_status = mt2063_get_status,
.set_analog_params = mt2063_set_analog_params,
.set_params = mt2063_set_params,
.get_if_frequency = mt2063_get_if_frequency,
.get_bandwidth = mt2063_get_bandwidth,
.release = mt2063_release,
};
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
struct mt2063_config *config,
struct i2c_adapter *i2c)
{
struct mt2063_state *state = NULL;
dprintk(2, "\n");
state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
if (!state)
return NULL;
state->config = config;
state->i2c = i2c;
state->frontend = fe;
state->reference = config->refclock / 1000; /* kHz */
fe->tuner_priv = state;
fe->ops.tuner_ops = mt2063_ops;
printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
return fe;
}
EXPORT_SYMBOL_GPL(mt2063_attach);
#if 0
/*
* Ancillary routines visible outside mt2063
* FIXME: Remove them in favor of using standard tuner callbacks
*/
static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
int err = 0;
dprintk(2, "\n");
err = MT2063_SoftwareShutdown(state, 1);
if (err < 0)
printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
return err;
}
static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
int err = 0;
dprintk(2, "\n");
err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
if (err < 0)
printk(KERN_ERR "%s: Invalid parameter\n", __func__);
return err;
}
#endif
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_DESCRIPTION("MT2063 Silicon tuner");
MODULE_LICENSE("GPL");