linux_dsm_epyc7002/include/linux/migrate.h

133 lines
4.2 KiB
C
Raw Normal View History

#ifndef _LINUX_MIGRATE_H
#define _LINUX_MIGRATE_H
#include <linux/mm.h>
#include <linux/mempolicy.h>
#include <linux/migrate_mode.h>
typedef struct page *new_page_t(struct page *page, unsigned long private,
int **reason);
typedef void free_page_t(struct page *page, unsigned long private);
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 07:02:31 +07:00
/*
* Return values from addresss_space_operations.migratepage():
* - negative errno on page migration failure;
* - zero on page migration success;
*
* The balloon page migration introduces this special case where a 'distinct'
* return code is used to flag a successful page migration to unmap_and_move().
* This approach is necessary because page migration can race against balloon
* deflation procedure, and for such case we could introduce a nasty page leak
* if a successfully migrated balloon page gets released concurrently with
* migration's unmap_and_move() wrap-up steps.
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 07:02:31 +07:00
*/
#define MIGRATEPAGE_SUCCESS 0
#define MIGRATEPAGE_BALLOON_SUCCESS 1 /* special ret code for balloon page
* sucessful migration case.
*/
enum migrate_reason {
MR_COMPACTION,
MR_MEMORY_FAILURE,
MR_MEMORY_HOTPLUG,
MR_SYSCALL, /* also applies to cpusets */
MR_MEMPOLICY_MBIND,
MR_NUMA_MISPLACED,
MR_CMA
};
mm: adjust address_space_operations.migratepage() return code Memory fragmentation introduced by ballooning might reduce significantly the number of 2MB contiguous memory blocks that can be used within a guest, thus imposing performance penalties associated with the reduced number of transparent huge pages that could be used by the guest workload. This patch-set follows the main idea discussed at 2012 LSFMMS session: "Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/ to introduce the required changes to the virtio_balloon driver, as well as the changes to the core compaction & migration bits, in order to make those subsystems aware of ballooned pages and allow memory balloon pages become movable within a guest, thus avoiding the aforementioned fragmentation issue Following are numbers that prove this patch benefits on allowing compaction to be more effective at memory ballooned guests. Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite, running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB chunks, at every minute (inflating/deflating), while test was running: ===BEGIN stress-highalloc STRESS-HIGHALLOC highalloc-3.7 highalloc-3.7 rc4-clean rc4-patch Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%) Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%) while Rested 75.00 ( 0.00%) 80.00 ( 5.00%) MMTests Statistics: duration 3.7 3.7 rc4-clean rc4-patch User 1207.59 1207.46 System 1300.55 1299.61 Elapsed 2273.72 2157.06 MMTests Statistics: vmstat 3.7 3.7 rc4-clean rc4-patch Page Ins 3581516 2374368 Page Outs 11148692 10410332 Swap Ins 80 47 Swap Outs 3641 476 Direct pages scanned 37978 33826 Kswapd pages scanned 1828245 1342869 Kswapd pages reclaimed 1710236 1304099 Direct pages reclaimed 32207 31005 Kswapd efficiency 93% 97% Kswapd velocity 804.077 622.546 Direct efficiency 84% 91% Direct velocity 16.703 15.682 Percentage direct scans 2% 2% Page writes by reclaim 79252 9704 Page writes file 75611 9228 Page writes anon 3641 476 Page reclaim immediate 16764 11014 Page rescued immediate 0 0 Slabs scanned 2171904 2152448 Direct inode steals 385 2261 Kswapd inode steals 659137 609670 Kswapd skipped wait 1 69 THP fault alloc 546 631 THP collapse alloc 361 339 THP splits 259 263 THP fault fallback 98 50 THP collapse fail 20 17 Compaction stalls 747 499 Compaction success 244 145 Compaction failures 503 354 Compaction pages moved 370888 474837 Compaction move failure 77378 65259 ===END stress-highalloc This patch: Introduce MIGRATEPAGE_SUCCESS as the default return code for address_space_operations.migratepage() method and documents the expected return code for the same method in failure cases. Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 07:02:31 +07:00
#ifdef CONFIG_MIGRATION
extern void putback_movable_pages(struct list_head *l);
extern int migrate_page(struct address_space *,
struct page *, struct page *, enum migrate_mode);
extern int migrate_pages(struct list_head *l, new_page_t new, free_page_t free,
unsigned long private, enum migrate_mode mode, int reason);
extern int migrate_prep(void);
extern int migrate_prep_local(void);
extern int migrate_vmas(struct mm_struct *mm,
const nodemask_t *from, const nodemask_t *to,
unsigned long flags);
extern void migrate_page_copy(struct page *newpage, struct page *page);
extern int migrate_huge_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page);
extern int migrate_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page,
struct buffer_head *head, enum migrate_mode mode,
int extra_count);
#else
static inline void putback_movable_pages(struct list_head *l) {}
static inline int migrate_pages(struct list_head *l, new_page_t new,
free_page_t free, unsigned long private, enum migrate_mode mode,
int reason)
{ return -ENOSYS; }
static inline int migrate_prep(void) { return -ENOSYS; }
static inline int migrate_prep_local(void) { return -ENOSYS; }
static inline int migrate_vmas(struct mm_struct *mm,
const nodemask_t *from, const nodemask_t *to,
unsigned long flags)
{
return -ENOSYS;
}
static inline void migrate_page_copy(struct page *newpage,
struct page *page) {}
static inline int migrate_huge_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page)
{
return -ENOSYS;
}
/* Possible settings for the migrate_page() method in address_operations */
#define migrate_page NULL
#endif /* CONFIG_MIGRATION */
#ifdef CONFIG_NUMA_BALANCING
extern bool pmd_trans_migrating(pmd_t pmd);
extern void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd);
extern int migrate_misplaced_page(struct page *page,
struct vm_area_struct *vma, int node);
extern bool migrate_ratelimited(int node);
#else
static inline bool pmd_trans_migrating(pmd_t pmd)
{
return false;
}
static inline void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
{
}
static inline int migrate_misplaced_page(struct page *page,
struct vm_area_struct *vma, int node)
{
return -EAGAIN; /* can't migrate now */
}
static inline bool migrate_ratelimited(int node)
{
return false;
}
#endif /* CONFIG_NUMA_BALANCING */
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
extern int migrate_misplaced_transhuge_page(struct mm_struct *mm,
struct vm_area_struct *vma,
pmd_t *pmd, pmd_t entry,
unsigned long address,
struct page *page, int node);
#else
static inline int migrate_misplaced_transhuge_page(struct mm_struct *mm,
struct vm_area_struct *vma,
pmd_t *pmd, pmd_t entry,
unsigned long address,
struct page *page, int node)
{
return -EAGAIN;
}
#endif /* CONFIG_NUMA_BALANCING && CONFIG_TRANSPARENT_HUGEPAGE*/
#endif /* _LINUX_MIGRATE_H */