linux_dsm_epyc7002/net/sctp/sm_statefuns.c

6021 lines
188 KiB
C
Raw Normal View History

/* SCTP kernel implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001-2002 Intel Corp.
* Copyright (c) 2002 Nokia Corp.
*
* This is part of the SCTP Linux Kernel Implementation.
*
* These are the state functions for the state machine.
*
* This SCTP implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This SCTP implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <lksctp-developers@lists.sourceforge.net>
*
* Or submit a bug report through the following website:
* http://www.sf.net/projects/lksctp
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Mathew Kotowsky <kotowsky@sctp.org>
* Sridhar Samudrala <samudrala@us.ibm.com>
* Jon Grimm <jgrimm@us.ibm.com>
* Hui Huang <hui.huang@nokia.com>
* Dajiang Zhang <dajiang.zhang@nokia.com>
* Daisy Chang <daisyc@us.ibm.com>
* Ardelle Fan <ardelle.fan@intel.com>
* Ryan Layer <rmlayer@us.ibm.com>
* Kevin Gao <kevin.gao@intel.com>
*
* Any bugs reported given to us we will try to fix... any fixes shared will
* be incorporated into the next SCTP release.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/net.h>
#include <linux/inet.h>
#include <net/sock.h>
#include <net/inet_ecn.h>
#include <linux/skbuff.h>
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
#include <net/sctp/structs.h>
static struct sctp_packet *sctp_abort_pkt_new(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
struct sctp_chunk *chunk,
const void *payload,
size_t paylen);
static int sctp_eat_data(const struct sctp_association *asoc,
struct sctp_chunk *chunk,
sctp_cmd_seq_t *commands);
static struct sctp_packet *sctp_ootb_pkt_new(const struct sctp_association *asoc,
const struct sctp_chunk *chunk);
static void sctp_send_stale_cookie_err(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const struct sctp_chunk *chunk,
sctp_cmd_seq_t *commands,
struct sctp_chunk *err_chunk);
static sctp_disposition_t sctp_sf_do_5_2_6_stale(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands);
static sctp_disposition_t sctp_sf_shut_8_4_5(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands);
static sctp_disposition_t sctp_sf_tabort_8_4_8(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands);
static struct sctp_sackhdr *sctp_sm_pull_sack(struct sctp_chunk *chunk);
static sctp_disposition_t sctp_stop_t1_and_abort(sctp_cmd_seq_t *commands,
__be16 error, int sk_err,
const struct sctp_association *asoc,
struct sctp_transport *transport);
static sctp_disposition_t sctp_sf_abort_violation(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
void *arg,
sctp_cmd_seq_t *commands,
const __u8 *payload,
const size_t paylen);
static sctp_disposition_t sctp_sf_violation_chunklen(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands);
static sctp_disposition_t sctp_sf_violation_paramlen(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg, void *ext,
sctp_cmd_seq_t *commands);
static sctp_disposition_t sctp_sf_violation_ctsn(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands);
static sctp_disposition_t sctp_sf_violation_chunk(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands);
static sctp_ierror_t sctp_sf_authenticate(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
struct sctp_chunk *chunk);
static sctp_disposition_t __sctp_sf_do_9_1_abort(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands);
/* Small helper function that checks if the chunk length
* is of the appropriate length. The 'required_length' argument
* is set to be the size of a specific chunk we are testing.
* Return Values: 1 = Valid length
* 0 = Invalid length
*
*/
static inline int
sctp_chunk_length_valid(struct sctp_chunk *chunk,
__u16 required_length)
{
__u16 chunk_length = ntohs(chunk->chunk_hdr->length);
if (unlikely(chunk_length < required_length))
return 0;
return 1;
}
/**********************************************************
* These are the state functions for handling chunk events.
**********************************************************/
/*
* Process the final SHUTDOWN COMPLETE.
*
* Section: 4 (C) (diagram), 9.2
* Upon reception of the SHUTDOWN COMPLETE chunk the endpoint will verify
* that it is in SHUTDOWN-ACK-SENT state, if it is not the chunk should be
* discarded. If the endpoint is in the SHUTDOWN-ACK-SENT state the endpoint
* should stop the T2-shutdown timer and remove all knowledge of the
* association (and thus the association enters the CLOSED state).
*
* Verification Tag: 8.5.1(C), sctpimpguide 2.41.
* C) Rules for packet carrying SHUTDOWN COMPLETE:
* ...
* - The receiver of a SHUTDOWN COMPLETE shall accept the packet
* if the Verification Tag field of the packet matches its own tag and
* the T bit is not set
* OR
* it is set to its peer's tag and the T bit is set in the Chunk
* Flags.
* Otherwise, the receiver MUST silently discard the packet
* and take no further action. An endpoint MUST ignore the
* SHUTDOWN COMPLETE if it is not in the SHUTDOWN-ACK-SENT state.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_4_C(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_ulpevent *ev;
if (!sctp_vtag_verify_either(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* RFC 2960 6.10 Bundling
*
* An endpoint MUST NOT bundle INIT, INIT ACK or
* SHUTDOWN COMPLETE with any other chunks.
*/
if (!chunk->singleton)
return sctp_sf_violation_chunk(ep, asoc, type, arg, commands);
/* Make sure that the SHUTDOWN_COMPLETE chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* RFC 2960 10.2 SCTP-to-ULP
*
* H) SHUTDOWN COMPLETE notification
*
* When SCTP completes the shutdown procedures (section 9.2) this
* notification is passed to the upper layer.
*/
ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_SHUTDOWN_COMP,
0, 0, 0, NULL, GFP_ATOMIC);
if (ev)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(ev));
/* Upon reception of the SHUTDOWN COMPLETE chunk the endpoint
* will verify that it is in SHUTDOWN-ACK-SENT state, if it is
* not the chunk should be discarded. If the endpoint is in
* the SHUTDOWN-ACK-SENT state the endpoint should stop the
* T2-shutdown timer and remove all knowledge of the
* association (and thus the association enters the CLOSED
* state).
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
SCTP_INC_STATS(SCTP_MIB_SHUTDOWNS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
return SCTP_DISPOSITION_DELETE_TCB;
}
/*
* Respond to a normal INIT chunk.
* We are the side that is being asked for an association.
*
* Section: 5.1 Normal Establishment of an Association, B
* B) "Z" shall respond immediately with an INIT ACK chunk. The
* destination IP address of the INIT ACK MUST be set to the source
* IP address of the INIT to which this INIT ACK is responding. In
* the response, besides filling in other parameters, "Z" must set the
* Verification Tag field to Tag_A, and also provide its own
* Verification Tag (Tag_Z) in the Initiate Tag field.
*
* Verification Tag: Must be 0.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_5_1B_init(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_chunk *repl;
struct sctp_association *new_asoc;
struct sctp_chunk *err_chunk;
struct sctp_packet *packet;
sctp_unrecognized_param_t *unk_param;
int len;
/* 6.10 Bundling
* An endpoint MUST NOT bundle INIT, INIT ACK or
* SHUTDOWN COMPLETE with any other chunks.
*
* IG Section 2.11.2
* Furthermore, we require that the receiver of an INIT chunk MUST
* enforce these rules by silently discarding an arriving packet
* with an INIT chunk that is bundled with other chunks.
*/
if (!chunk->singleton)
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* If the packet is an OOTB packet which is temporarily on the
* control endpoint, respond with an ABORT.
*/
if (ep == sctp_sk((sctp_get_ctl_sock()))->ep) {
SCTP_INC_STATS(SCTP_MIB_OUTOFBLUES);
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands);
}
/* 3.1 A packet containing an INIT chunk MUST have a zero Verification
* Tag.
*/
if (chunk->sctp_hdr->vtag != 0)
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands);
/* Make sure that the INIT chunk has a valid length.
* Normally, this would cause an ABORT with a Protocol Violation
* error, but since we don't have an association, we'll
* just discard the packet.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_init_chunk_t)))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Verify the INIT chunk before processing it. */
err_chunk = NULL;
if (!sctp_verify_init(asoc, chunk->chunk_hdr->type,
(sctp_init_chunk_t *)chunk->chunk_hdr, chunk,
&err_chunk)) {
/* This chunk contains fatal error. It is to be discarded.
* Send an ABORT, with causes if there is any.
*/
if (err_chunk) {
packet = sctp_abort_pkt_new(ep, asoc, arg,
(__u8 *)(err_chunk->chunk_hdr) +
sizeof(sctp_chunkhdr_t),
ntohs(err_chunk->chunk_hdr->length) -
sizeof(sctp_chunkhdr_t));
sctp_chunk_free(err_chunk);
if (packet) {
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
SCTP_PACKET(packet));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
return SCTP_DISPOSITION_CONSUME;
} else {
return SCTP_DISPOSITION_NOMEM;
}
} else {
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg,
commands);
}
}
/* Grab the INIT header. */
chunk->subh.init_hdr = (sctp_inithdr_t *)chunk->skb->data;
/* Tag the variable length parameters. */
chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(sctp_inithdr_t));
new_asoc = sctp_make_temp_asoc(ep, chunk, GFP_ATOMIC);
if (!new_asoc)
goto nomem;
/* The call, sctp_process_init(), can fail on memory allocation. */
if (!sctp_process_init(new_asoc, chunk->chunk_hdr->type,
sctp_source(chunk),
(sctp_init_chunk_t *)chunk->chunk_hdr,
GFP_ATOMIC))
goto nomem_init;
/* B) "Z" shall respond immediately with an INIT ACK chunk. */
/* If there are errors need to be reported for unknown parameters,
* make sure to reserve enough room in the INIT ACK for them.
*/
len = 0;
if (err_chunk)
len = ntohs(err_chunk->chunk_hdr->length) -
sizeof(sctp_chunkhdr_t);
if (sctp_assoc_set_bind_addr_from_ep(new_asoc, GFP_ATOMIC) < 0)
goto nomem_init;
repl = sctp_make_init_ack(new_asoc, chunk, GFP_ATOMIC, len);
if (!repl)
goto nomem_init;
/* If there are errors need to be reported for unknown parameters,
* include them in the outgoing INIT ACK as "Unrecognized parameter"
* parameter.
*/
if (err_chunk) {
/* Get the "Unrecognized parameter" parameter(s) out of the
* ERROR chunk generated by sctp_verify_init(). Since the
* error cause code for "unknown parameter" and the
* "Unrecognized parameter" type is the same, we can
* construct the parameters in INIT ACK by copying the
* ERROR causes over.
*/
unk_param = (sctp_unrecognized_param_t *)
((__u8 *)(err_chunk->chunk_hdr) +
sizeof(sctp_chunkhdr_t));
/* Replace the cause code with the "Unrecognized parameter"
* parameter type.
*/
sctp_addto_chunk(repl, len, unk_param);
sctp_chunk_free(err_chunk);
}
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
/*
* Note: After sending out INIT ACK with the State Cookie parameter,
* "Z" MUST NOT allocate any resources, nor keep any states for the
* new association. Otherwise, "Z" will be vulnerable to resource
* attacks.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
return SCTP_DISPOSITION_DELETE_TCB;
nomem_init:
sctp_association_free(new_asoc);
nomem:
if (err_chunk)
sctp_chunk_free(err_chunk);
return SCTP_DISPOSITION_NOMEM;
}
/*
* Respond to a normal INIT ACK chunk.
* We are the side that is initiating the association.
*
* Section: 5.1 Normal Establishment of an Association, C
* C) Upon reception of the INIT ACK from "Z", "A" shall stop the T1-init
* timer and leave COOKIE-WAIT state. "A" shall then send the State
* Cookie received in the INIT ACK chunk in a COOKIE ECHO chunk, start
* the T1-cookie timer, and enter the COOKIE-ECHOED state.
*
* Note: The COOKIE ECHO chunk can be bundled with any pending outbound
* DATA chunks, but it MUST be the first chunk in the packet and
* until the COOKIE ACK is returned the sender MUST NOT send any
* other packets to the peer.
*
* Verification Tag: 3.3.3
* If the value of the Initiate Tag in a received INIT ACK chunk is
* found to be 0, the receiver MUST treat it as an error and close the
* association by transmitting an ABORT.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_5_1C_ack(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
sctp_init_chunk_t *initchunk;
struct sctp_chunk *err_chunk;
struct sctp_packet *packet;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* 6.10 Bundling
* An endpoint MUST NOT bundle INIT, INIT ACK or
* SHUTDOWN COMPLETE with any other chunks.
*/
if (!chunk->singleton)
return sctp_sf_violation_chunk(ep, asoc, type, arg, commands);
/* Make sure that the INIT-ACK chunk has a valid length */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_initack_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Grab the INIT header. */
chunk->subh.init_hdr = (sctp_inithdr_t *) chunk->skb->data;
/* Verify the INIT chunk before processing it. */
err_chunk = NULL;
if (!sctp_verify_init(asoc, chunk->chunk_hdr->type,
(sctp_init_chunk_t *)chunk->chunk_hdr, chunk,
&err_chunk)) {
sctp_error_t error = SCTP_ERROR_NO_RESOURCE;
/* This chunk contains fatal error. It is to be discarded.
* Send an ABORT, with causes. If there are no causes,
* then there wasn't enough memory. Just terminate
* the association.
*/
if (err_chunk) {
packet = sctp_abort_pkt_new(ep, asoc, arg,
(__u8 *)(err_chunk->chunk_hdr) +
sizeof(sctp_chunkhdr_t),
ntohs(err_chunk->chunk_hdr->length) -
sizeof(sctp_chunkhdr_t));
sctp_chunk_free(err_chunk);
if (packet) {
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
SCTP_PACKET(packet));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
error = SCTP_ERROR_INV_PARAM;
}
}
/* SCTP-AUTH, Section 6.3:
* It should be noted that if the receiver wants to tear
* down an association in an authenticated way only, the
* handling of malformed packets should not result in
* tearing down the association.
*
* This means that if we only want to abort associations
* in an authenticated way (i.e AUTH+ABORT), then we
* can't destroy this association just becuase the packet
* was malformed.
*/
if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
return sctp_stop_t1_and_abort(commands, error, ECONNREFUSED,
asoc, chunk->transport);
}
/* Tag the variable length parameters. Note that we never
* convert the parameters in an INIT chunk.
*/
chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(sctp_inithdr_t));
initchunk = (sctp_init_chunk_t *) chunk->chunk_hdr;
sctp_add_cmd_sf(commands, SCTP_CMD_PEER_INIT,
SCTP_PEER_INIT(initchunk));
/* Reset init error count upon receipt of INIT-ACK. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_RESET, SCTP_NULL());
/* 5.1 C) "A" shall stop the T1-init timer and leave
* COOKIE-WAIT state. "A" shall then ... start the T1-cookie
* timer, and enter the COOKIE-ECHOED state.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_COOKIE_ECHOED));
/* SCTP-AUTH: genereate the assocition shared keys so that
* we can potentially signe the COOKIE-ECHO.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_SHKEY, SCTP_NULL());
/* 5.1 C) "A" shall then send the State Cookie received in the
* INIT ACK chunk in a COOKIE ECHO chunk, ...
*/
/* If there is any errors to report, send the ERROR chunk generated
* for unknown parameters as well.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_COOKIE_ECHO,
SCTP_CHUNK(err_chunk));
return SCTP_DISPOSITION_CONSUME;
}
/*
* Respond to a normal COOKIE ECHO chunk.
* We are the side that is being asked for an association.
*
* Section: 5.1 Normal Establishment of an Association, D
* D) Upon reception of the COOKIE ECHO chunk, Endpoint "Z" will reply
* with a COOKIE ACK chunk after building a TCB and moving to
* the ESTABLISHED state. A COOKIE ACK chunk may be bundled with
* any pending DATA chunks (and/or SACK chunks), but the COOKIE ACK
* chunk MUST be the first chunk in the packet.
*
* IMPLEMENTATION NOTE: An implementation may choose to send the
* Communication Up notification to the SCTP user upon reception
* of a valid COOKIE ECHO chunk.
*
* Verification Tag: 8.5.1 Exceptions in Verification Tag Rules
* D) Rules for packet carrying a COOKIE ECHO
*
* - When sending a COOKIE ECHO, the endpoint MUST use the value of the
* Initial Tag received in the INIT ACK.
*
* - The receiver of a COOKIE ECHO follows the procedures in Section 5.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_5_1D_ce(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type, void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_association *new_asoc;
sctp_init_chunk_t *peer_init;
struct sctp_chunk *repl;
struct sctp_ulpevent *ev, *ai_ev = NULL;
int error = 0;
struct sctp_chunk *err_chk_p;
struct sock *sk;
/* If the packet is an OOTB packet which is temporarily on the
* control endpoint, respond with an ABORT.
*/
if (ep == sctp_sk((sctp_get_ctl_sock()))->ep) {
SCTP_INC_STATS(SCTP_MIB_OUTOFBLUES);
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands);
}
/* Make sure that the COOKIE_ECHO chunk has a valid length.
* In this case, we check that we have enough for at least a
* chunk header. More detailed verification is done
* in sctp_unpack_cookie().
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* If the endpoint is not listening or if the number of associations
* on the TCP-style socket exceed the max backlog, respond with an
* ABORT.
*/
sk = ep->base.sk;
if (!sctp_sstate(sk, LISTENING) ||
(sctp_style(sk, TCP) && sk_acceptq_is_full(sk)))
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands);
/* "Decode" the chunk. We have no optional parameters so we
* are in good shape.
*/
chunk->subh.cookie_hdr =
(struct sctp_signed_cookie *)chunk->skb->data;
if (!pskb_pull(chunk->skb, ntohs(chunk->chunk_hdr->length) -
sizeof(sctp_chunkhdr_t)))
goto nomem;
/* 5.1 D) Upon reception of the COOKIE ECHO chunk, Endpoint
* "Z" will reply with a COOKIE ACK chunk after building a TCB
* and moving to the ESTABLISHED state.
*/
new_asoc = sctp_unpack_cookie(ep, asoc, chunk, GFP_ATOMIC, &error,
&err_chk_p);
/* FIXME:
* If the re-build failed, what is the proper error path
* from here?
*
* [We should abort the association. --piggy]
*/
if (!new_asoc) {
/* FIXME: Several errors are possible. A bad cookie should
* be silently discarded, but think about logging it too.
*/
switch (error) {
case -SCTP_IERROR_NOMEM:
goto nomem;
case -SCTP_IERROR_STALE_COOKIE:
sctp_send_stale_cookie_err(ep, asoc, chunk, commands,
err_chk_p);
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
case -SCTP_IERROR_BAD_SIG:
default:
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
}
/* Delay state machine commands until later.
*
* Re-build the bind address for the association is done in
* the sctp_unpack_cookie() already.
*/
/* This is a brand-new association, so these are not yet side
* effects--it is safe to run them here.
*/
peer_init = &chunk->subh.cookie_hdr->c.peer_init[0];
if (!sctp_process_init(new_asoc, chunk->chunk_hdr->type,
&chunk->subh.cookie_hdr->c.peer_addr,
peer_init, GFP_ATOMIC))
goto nomem_init;
/* SCTP-AUTH: Now that we've populate required fields in
* sctp_process_init, set up the assocaition shared keys as
* necessary so that we can potentially authenticate the ACK
*/
error = sctp_auth_asoc_init_active_key(new_asoc, GFP_ATOMIC);
if (error)
goto nomem_init;
/* SCTP-AUTH: auth_chunk pointer is only set when the cookie-echo
* is supposed to be authenticated and we have to do delayed
* authentication. We've just recreated the association using
* the information in the cookie and now it's much easier to
* do the authentication.
*/
if (chunk->auth_chunk) {
struct sctp_chunk auth;
sctp_ierror_t ret;
/* set-up our fake chunk so that we can process it */
auth.skb = chunk->auth_chunk;
auth.asoc = chunk->asoc;
auth.sctp_hdr = chunk->sctp_hdr;
auth.chunk_hdr = (sctp_chunkhdr_t *)skb_push(chunk->auth_chunk,
sizeof(sctp_chunkhdr_t));
skb_pull(chunk->auth_chunk, sizeof(sctp_chunkhdr_t));
auth.transport = chunk->transport;
ret = sctp_sf_authenticate(ep, new_asoc, type, &auth);
/* We can now safely free the auth_chunk clone */
kfree_skb(chunk->auth_chunk);
if (ret != SCTP_IERROR_NO_ERROR) {
sctp_association_free(new_asoc);
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
}
repl = sctp_make_cookie_ack(new_asoc, chunk);
if (!repl)
goto nomem_init;
/* RFC 2960 5.1 Normal Establishment of an Association
*
* D) IMPLEMENTATION NOTE: An implementation may choose to
* send the Communication Up notification to the SCTP user
* upon reception of a valid COOKIE ECHO chunk.
*/
ev = sctp_ulpevent_make_assoc_change(new_asoc, 0, SCTP_COMM_UP, 0,
new_asoc->c.sinit_num_ostreams,
new_asoc->c.sinit_max_instreams,
NULL, GFP_ATOMIC);
if (!ev)
goto nomem_ev;
/* Sockets API Draft Section 5.3.1.6
* When a peer sends a Adaptation Layer Indication parameter , SCTP
* delivers this notification to inform the application that of the
* peers requested adaptation layer.
*/
if (new_asoc->peer.adaptation_ind) {
ai_ev = sctp_ulpevent_make_adaptation_indication(new_asoc,
GFP_ATOMIC);
if (!ai_ev)
goto nomem_aiev;
}
/* Add all the state machine commands now since we've created
* everything. This way we don't introduce memory corruptions
* during side-effect processing and correclty count established
* associations.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_ESTABLISHED));
SCTP_INC_STATS(SCTP_MIB_CURRESTAB);
SCTP_INC_STATS(SCTP_MIB_PASSIVEESTABS);
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL());
if (new_asoc->autoclose)
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
/* This will send the COOKIE ACK */
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
/* Queue the ASSOC_CHANGE event */
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
/* Send up the Adaptation Layer Indication event */
if (ai_ev)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(ai_ev));
return SCTP_DISPOSITION_CONSUME;
nomem_aiev:
sctp_ulpevent_free(ev);
nomem_ev:
sctp_chunk_free(repl);
nomem_init:
sctp_association_free(new_asoc);
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* Respond to a normal COOKIE ACK chunk.
* We are the side that is being asked for an association.
*
* RFC 2960 5.1 Normal Establishment of an Association
*
* E) Upon reception of the COOKIE ACK, endpoint "A" will move from the
* COOKIE-ECHOED state to the ESTABLISHED state, stopping the T1-cookie
* timer. It may also notify its ULP about the successful
* establishment of the association with a Communication Up
* notification (see Section 10).
*
* Verification Tag:
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_5_1E_ca(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type, void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_ulpevent *ev;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Verify that the chunk length for the COOKIE-ACK is OK.
* If we don't do this, any bundled chunks may be junked.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Reset init error count upon receipt of COOKIE-ACK,
* to avoid problems with the managemement of this
* counter in stale cookie situations when a transition back
* from the COOKIE-ECHOED state to the COOKIE-WAIT
* state is performed.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_RESET, SCTP_NULL());
/* RFC 2960 5.1 Normal Establishment of an Association
*
* E) Upon reception of the COOKIE ACK, endpoint "A" will move
* from the COOKIE-ECHOED state to the ESTABLISHED state,
* stopping the T1-cookie timer.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_ESTABLISHED));
SCTP_INC_STATS(SCTP_MIB_CURRESTAB);
SCTP_INC_STATS(SCTP_MIB_ACTIVEESTABS);
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL());
if (asoc->autoclose)
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
/* It may also notify its ULP about the successful
* establishment of the association with a Communication Up
* notification (see Section 10).
*/
ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_UP,
0, asoc->c.sinit_num_ostreams,
asoc->c.sinit_max_instreams,
NULL, GFP_ATOMIC);
if (!ev)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
/* Sockets API Draft Section 5.3.1.6
* When a peer sends a Adaptation Layer Indication parameter , SCTP
* delivers this notification to inform the application that of the
* peers requested adaptation layer.
*/
if (asoc->peer.adaptation_ind) {
ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
if (!ev)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(ev));
}
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/* Generate and sendout a heartbeat packet. */
static sctp_disposition_t sctp_sf_heartbeat(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_transport *transport = (struct sctp_transport *) arg;
struct sctp_chunk *reply;
sctp_sender_hb_info_t hbinfo;
size_t paylen = 0;
hbinfo.param_hdr.type = SCTP_PARAM_HEARTBEAT_INFO;
hbinfo.param_hdr.length = htons(sizeof(sctp_sender_hb_info_t));
hbinfo.daddr = transport->ipaddr;
hbinfo.sent_at = jiffies;
hbinfo.hb_nonce = transport->hb_nonce;
/* Send a heartbeat to our peer. */
paylen = sizeof(sctp_sender_hb_info_t);
reply = sctp_make_heartbeat(asoc, transport, &hbinfo, paylen);
if (!reply)
return SCTP_DISPOSITION_NOMEM;
/* Set rto_pending indicating that an RTT measurement
* is started with this heartbeat chunk.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_RTO_PENDING,
SCTP_TRANSPORT(transport));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
return SCTP_DISPOSITION_CONSUME;
}
/* Generate a HEARTBEAT packet on the given transport. */
sctp_disposition_t sctp_sf_sendbeat_8_3(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_transport *transport = (struct sctp_transport *) arg;
if (asoc->overall_error_count > asoc->max_retrans) {
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ETIMEDOUT));
/* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_NO_ERROR));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_DISPOSITION_DELETE_TCB;
}
/* Section 3.3.5.
* The Sender-specific Heartbeat Info field should normally include
* information about the sender's current time when this HEARTBEAT
* chunk is sent and the destination transport address to which this
* HEARTBEAT is sent (see Section 8.3).
*/
if (transport->param_flags & SPP_HB_ENABLE) {
if (SCTP_DISPOSITION_NOMEM ==
sctp_sf_heartbeat(ep, asoc, type, arg,
commands))
return SCTP_DISPOSITION_NOMEM;
/* Set transport error counter and association error counter
* when sending heartbeat.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_IDLE,
SCTP_TRANSPORT(transport));
sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_HB_SENT,
SCTP_TRANSPORT(transport));
}
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMER_UPDATE,
SCTP_TRANSPORT(transport));
return SCTP_DISPOSITION_CONSUME;
}
/*
* Process an heartbeat request.
*
* Section: 8.3 Path Heartbeat
* The receiver of the HEARTBEAT should immediately respond with a
* HEARTBEAT ACK that contains the Heartbeat Information field copied
* from the received HEARTBEAT chunk.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
* When receiving an SCTP packet, the endpoint MUST ensure that the
* value in the Verification Tag field of the received SCTP packet
* matches its own Tag. If the received Verification Tag value does not
* match the receiver's own tag value, the receiver shall silently
* discard the packet and shall not process it any further except for
* those cases listed in Section 8.5.1 below.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_beat_8_3(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_chunk *reply;
size_t paylen = 0;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the HEARTBEAT chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_heartbeat_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* 8.3 The receiver of the HEARTBEAT should immediately
* respond with a HEARTBEAT ACK that contains the Heartbeat
* Information field copied from the received HEARTBEAT chunk.
*/
chunk->subh.hb_hdr = (sctp_heartbeathdr_t *) chunk->skb->data;
paylen = ntohs(chunk->chunk_hdr->length) - sizeof(sctp_chunkhdr_t);
if (!pskb_pull(chunk->skb, paylen))
goto nomem;
reply = sctp_make_heartbeat_ack(asoc, chunk,
chunk->subh.hb_hdr, paylen);
if (!reply)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* Process the returning HEARTBEAT ACK.
*
* Section: 8.3 Path Heartbeat
* Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT
* should clear the error counter of the destination transport
* address to which the HEARTBEAT was sent, and mark the destination
* transport address as active if it is not so marked. The endpoint may
* optionally report to the upper layer when an inactive destination
* address is marked as active due to the reception of the latest
* HEARTBEAT ACK. The receiver of the HEARTBEAT ACK must also
* clear the association overall error count as well (as defined
* in section 8.1).
*
* The receiver of the HEARTBEAT ACK should also perform an RTT
* measurement for that destination transport address using the time
* value carried in the HEARTBEAT ACK chunk.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_backbeat_8_3(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
union sctp_addr from_addr;
struct sctp_transport *link;
sctp_sender_hb_info_t *hbinfo;
unsigned long max_interval;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the HEARTBEAT-ACK chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_heartbeat_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
/* Make sure that the length of the parameter is what we expect */
if (ntohs(hbinfo->param_hdr.length) !=
sizeof(sctp_sender_hb_info_t)) {
return SCTP_DISPOSITION_DISCARD;
}
from_addr = hbinfo->daddr;
link = sctp_assoc_lookup_paddr(asoc, &from_addr);
/* This should never happen, but lets log it if so. */
if (unlikely(!link)) {
if (from_addr.sa.sa_family == AF_INET6) {
if (net_ratelimit())
printk(KERN_WARNING
"%s association %p could not find address %pI6\n",
__func__,
asoc,
&from_addr.v6.sin6_addr);
} else {
if (net_ratelimit())
printk(KERN_WARNING
"%s association %p could not find address %pI4\n",
__func__,
asoc,
&from_addr.v4.sin_addr.s_addr);
}
return SCTP_DISPOSITION_DISCARD;
}
/* Validate the 64-bit random nonce. */
if (hbinfo->hb_nonce != link->hb_nonce)
return SCTP_DISPOSITION_DISCARD;
max_interval = link->hbinterval + link->rto;
/* Check if the timestamp looks valid. */
if (time_after(hbinfo->sent_at, jiffies) ||
time_after(jiffies, hbinfo->sent_at + max_interval)) {
SCTP_DEBUG_PRINTK("%s: HEARTBEAT ACK with invalid timestamp "
"received for transport: %p\n",
__func__, link);
return SCTP_DISPOSITION_DISCARD;
}
/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of
* the HEARTBEAT should clear the error counter of the
* destination transport address to which the HEARTBEAT was
* sent and mark the destination transport address as active if
* it is not so marked.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_ON, SCTP_TRANSPORT(link));
return SCTP_DISPOSITION_CONSUME;
}
/* Helper function to send out an abort for the restart
* condition.
*/
static int sctp_sf_send_restart_abort(union sctp_addr *ssa,
struct sctp_chunk *init,
sctp_cmd_seq_t *commands)
{
int len;
struct sctp_packet *pkt;
union sctp_addr_param *addrparm;
struct sctp_errhdr *errhdr;
struct sctp_endpoint *ep;
char buffer[sizeof(struct sctp_errhdr)+sizeof(union sctp_addr_param)];
struct sctp_af *af = sctp_get_af_specific(ssa->v4.sin_family);
/* Build the error on the stack. We are way to malloc crazy
* throughout the code today.
*/
errhdr = (struct sctp_errhdr *)buffer;
addrparm = (union sctp_addr_param *)errhdr->variable;
/* Copy into a parm format. */
len = af->to_addr_param(ssa, addrparm);
len += sizeof(sctp_errhdr_t);
errhdr->cause = SCTP_ERROR_RESTART;
errhdr->length = htons(len);
/* Assign to the control socket. */
ep = sctp_sk((sctp_get_ctl_sock()))->ep;
/* Association is NULL since this may be a restart attack and we
* want to send back the attacker's vtag.
*/
pkt = sctp_abort_pkt_new(ep, NULL, init, errhdr, len);
if (!pkt)
goto out;
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, SCTP_PACKET(pkt));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
/* Discard the rest of the inbound packet. */
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL());
out:
/* Even if there is no memory, treat as a failure so
* the packet will get dropped.
*/
return 0;
}
/* A restart is occurring, check to make sure no new addresses
* are being added as we may be under a takeover attack.
*/
static int sctp_sf_check_restart_addrs(const struct sctp_association *new_asoc,
const struct sctp_association *asoc,
struct sctp_chunk *init,
sctp_cmd_seq_t *commands)
{
struct sctp_transport *new_addr, *addr;
int found;
/* Implementor's Guide - Sectin 5.2.2
* ...
* Before responding the endpoint MUST check to see if the
* unexpected INIT adds new addresses to the association. If new
* addresses are added to the association, the endpoint MUST respond
* with an ABORT..
*/
/* Search through all current addresses and make sure
* we aren't adding any new ones.
*/
new_addr = NULL;
found = 0;
list_for_each_entry(new_addr, &new_asoc->peer.transport_addr_list,
transports) {
found = 0;
list_for_each_entry(addr, &asoc->peer.transport_addr_list,
transports) {
if (sctp_cmp_addr_exact(&new_addr->ipaddr,
&addr->ipaddr)) {
found = 1;
break;
}
}
if (!found)
break;
}
/* If a new address was added, ABORT the sender. */
if (!found && new_addr) {
sctp_sf_send_restart_abort(&new_addr->ipaddr, init, commands);
}
/* Return success if all addresses were found. */
return found;
}
/* Populate the verification/tie tags based on overlapping INIT
* scenario.
*
* Note: Do not use in CLOSED or SHUTDOWN-ACK-SENT state.
*/
static void sctp_tietags_populate(struct sctp_association *new_asoc,
const struct sctp_association *asoc)
{
switch (asoc->state) {
/* 5.2.1 INIT received in COOKIE-WAIT or COOKIE-ECHOED State */
case SCTP_STATE_COOKIE_WAIT:
new_asoc->c.my_vtag = asoc->c.my_vtag;
new_asoc->c.my_ttag = asoc->c.my_vtag;
new_asoc->c.peer_ttag = 0;
break;
case SCTP_STATE_COOKIE_ECHOED:
new_asoc->c.my_vtag = asoc->c.my_vtag;
new_asoc->c.my_ttag = asoc->c.my_vtag;
new_asoc->c.peer_ttag = asoc->c.peer_vtag;
break;
/* 5.2.2 Unexpected INIT in States Other than CLOSED, COOKIE-ECHOED,
* COOKIE-WAIT and SHUTDOWN-ACK-SENT
*/
default:
new_asoc->c.my_ttag = asoc->c.my_vtag;
new_asoc->c.peer_ttag = asoc->c.peer_vtag;
break;
}
/* Other parameters for the endpoint SHOULD be copied from the
* existing parameters of the association (e.g. number of
* outbound streams) into the INIT ACK and cookie.
*/
new_asoc->rwnd = asoc->rwnd;
new_asoc->c.sinit_num_ostreams = asoc->c.sinit_num_ostreams;
new_asoc->c.sinit_max_instreams = asoc->c.sinit_max_instreams;
new_asoc->c.initial_tsn = asoc->c.initial_tsn;
}
/*
* Compare vtag/tietag values to determine unexpected COOKIE-ECHO
* handling action.
*
* RFC 2960 5.2.4 Handle a COOKIE ECHO when a TCB exists.
*
* Returns value representing action to be taken. These action values
* correspond to Action/Description values in RFC 2960, Table 2.
*/
static char sctp_tietags_compare(struct sctp_association *new_asoc,
const struct sctp_association *asoc)
{
/* In this case, the peer may have restarted. */
if ((asoc->c.my_vtag != new_asoc->c.my_vtag) &&
(asoc->c.peer_vtag != new_asoc->c.peer_vtag) &&
(asoc->c.my_vtag == new_asoc->c.my_ttag) &&
(asoc->c.peer_vtag == new_asoc->c.peer_ttag))
return 'A';
/* Collision case B. */
if ((asoc->c.my_vtag == new_asoc->c.my_vtag) &&
((asoc->c.peer_vtag != new_asoc->c.peer_vtag) ||
(0 == asoc->c.peer_vtag))) {
return 'B';
}
/* Collision case D. */
if ((asoc->c.my_vtag == new_asoc->c.my_vtag) &&
(asoc->c.peer_vtag == new_asoc->c.peer_vtag))
return 'D';
/* Collision case C. */
if ((asoc->c.my_vtag != new_asoc->c.my_vtag) &&
(asoc->c.peer_vtag == new_asoc->c.peer_vtag) &&
(0 == new_asoc->c.my_ttag) &&
(0 == new_asoc->c.peer_ttag))
return 'C';
/* No match to any of the special cases; discard this packet. */
return 'E';
}
/* Common helper routine for both duplicate and simulataneous INIT
* chunk handling.
*/
static sctp_disposition_t sctp_sf_do_unexpected_init(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg, sctp_cmd_seq_t *commands)
{
sctp_disposition_t retval;
struct sctp_chunk *chunk = arg;
struct sctp_chunk *repl;
struct sctp_association *new_asoc;
struct sctp_chunk *err_chunk;
struct sctp_packet *packet;
sctp_unrecognized_param_t *unk_param;
int len;
/* 6.10 Bundling
* An endpoint MUST NOT bundle INIT, INIT ACK or
* SHUTDOWN COMPLETE with any other chunks.
*
* IG Section 2.11.2
* Furthermore, we require that the receiver of an INIT chunk MUST
* enforce these rules by silently discarding an arriving packet
* with an INIT chunk that is bundled with other chunks.
*/
if (!chunk->singleton)
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* 3.1 A packet containing an INIT chunk MUST have a zero Verification
* Tag.
*/
if (chunk->sctp_hdr->vtag != 0)
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands);
/* Make sure that the INIT chunk has a valid length.
* In this case, we generate a protocol violation since we have
* an association established.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_init_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Grab the INIT header. */
chunk->subh.init_hdr = (sctp_inithdr_t *) chunk->skb->data;
/* Tag the variable length parameters. */
chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(sctp_inithdr_t));
/* Verify the INIT chunk before processing it. */
err_chunk = NULL;
if (!sctp_verify_init(asoc, chunk->chunk_hdr->type,
(sctp_init_chunk_t *)chunk->chunk_hdr, chunk,
&err_chunk)) {
/* This chunk contains fatal error. It is to be discarded.
* Send an ABORT, with causes if there is any.
*/
if (err_chunk) {
packet = sctp_abort_pkt_new(ep, asoc, arg,
(__u8 *)(err_chunk->chunk_hdr) +
sizeof(sctp_chunkhdr_t),
ntohs(err_chunk->chunk_hdr->length) -
sizeof(sctp_chunkhdr_t));
if (packet) {
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
SCTP_PACKET(packet));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
retval = SCTP_DISPOSITION_CONSUME;
} else {
retval = SCTP_DISPOSITION_NOMEM;
}
goto cleanup;
} else {
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg,
commands);
}
}
/*
* Other parameters for the endpoint SHOULD be copied from the
* existing parameters of the association (e.g. number of
* outbound streams) into the INIT ACK and cookie.
* FIXME: We are copying parameters from the endpoint not the
* association.
*/
new_asoc = sctp_make_temp_asoc(ep, chunk, GFP_ATOMIC);
if (!new_asoc)
goto nomem;
/* In the outbound INIT ACK the endpoint MUST copy its current
* Verification Tag and Peers Verification tag into a reserved
* place (local tie-tag and per tie-tag) within the state cookie.
*/
if (!sctp_process_init(new_asoc, chunk->chunk_hdr->type,
sctp_source(chunk),
(sctp_init_chunk_t *)chunk->chunk_hdr,
GFP_ATOMIC))
goto nomem;
/* Make sure no new addresses are being added during the
* restart. Do not do this check for COOKIE-WAIT state,
* since there are no peer addresses to check against.
* Upon return an ABORT will have been sent if needed.
*/
if (!sctp_state(asoc, COOKIE_WAIT)) {
if (!sctp_sf_check_restart_addrs(new_asoc, asoc, chunk,
commands)) {
retval = SCTP_DISPOSITION_CONSUME;
goto nomem_retval;
}
}
sctp_tietags_populate(new_asoc, asoc);
/* B) "Z" shall respond immediately with an INIT ACK chunk. */
/* If there are errors need to be reported for unknown parameters,
* make sure to reserve enough room in the INIT ACK for them.
*/
len = 0;
if (err_chunk) {
len = ntohs(err_chunk->chunk_hdr->length) -
sizeof(sctp_chunkhdr_t);
}
if (sctp_assoc_set_bind_addr_from_ep(new_asoc, GFP_ATOMIC) < 0)
goto nomem;
repl = sctp_make_init_ack(new_asoc, chunk, GFP_ATOMIC, len);
if (!repl)
goto nomem;
/* If there are errors need to be reported for unknown parameters,
* include them in the outgoing INIT ACK as "Unrecognized parameter"
* parameter.
*/
if (err_chunk) {
/* Get the "Unrecognized parameter" parameter(s) out of the
* ERROR chunk generated by sctp_verify_init(). Since the
* error cause code for "unknown parameter" and the
* "Unrecognized parameter" type is the same, we can
* construct the parameters in INIT ACK by copying the
* ERROR causes over.
*/
unk_param = (sctp_unrecognized_param_t *)
((__u8 *)(err_chunk->chunk_hdr) +
sizeof(sctp_chunkhdr_t));
/* Replace the cause code with the "Unrecognized parameter"
* parameter type.
*/
sctp_addto_chunk(repl, len, unk_param);
}
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
/*
* Note: After sending out INIT ACK with the State Cookie parameter,
* "Z" MUST NOT allocate any resources for this new association.
* Otherwise, "Z" will be vulnerable to resource attacks.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
retval = SCTP_DISPOSITION_CONSUME;
return retval;
nomem:
retval = SCTP_DISPOSITION_NOMEM;
nomem_retval:
if (new_asoc)
sctp_association_free(new_asoc);
cleanup:
if (err_chunk)
sctp_chunk_free(err_chunk);
return retval;
}
/*
* Handle simultanous INIT.
* This means we started an INIT and then we got an INIT request from
* our peer.
*
* Section: 5.2.1 INIT received in COOKIE-WAIT or COOKIE-ECHOED State (Item B)
* This usually indicates an initialization collision, i.e., each
* endpoint is attempting, at about the same time, to establish an
* association with the other endpoint.
*
* Upon receipt of an INIT in the COOKIE-WAIT or COOKIE-ECHOED state, an
* endpoint MUST respond with an INIT ACK using the same parameters it
* sent in its original INIT chunk (including its Verification Tag,
* unchanged). These original parameters are combined with those from the
* newly received INIT chunk. The endpoint shall also generate a State
* Cookie with the INIT ACK. The endpoint uses the parameters sent in its
* INIT to calculate the State Cookie.
*
* After that, the endpoint MUST NOT change its state, the T1-init
* timer shall be left running and the corresponding TCB MUST NOT be
* destroyed. The normal procedures for handling State Cookies when
* a TCB exists will resolve the duplicate INITs to a single association.
*
* For an endpoint that is in the COOKIE-ECHOED state it MUST populate
* its Tie-Tags with the Tag information of itself and its peer (see
* section 5.2.2 for a description of the Tie-Tags).
*
* Verification Tag: Not explicit, but an INIT can not have a valid
* verification tag, so we skip the check.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_5_2_1_siminit(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* Call helper to do the real work for both simulataneous and
* duplicate INIT chunk handling.
*/
return sctp_sf_do_unexpected_init(ep, asoc, type, arg, commands);
}
/*
* Handle duplicated INIT messages. These are usually delayed
* restransmissions.
*
* Section: 5.2.2 Unexpected INIT in States Other than CLOSED,
* COOKIE-ECHOED and COOKIE-WAIT
*
* Unless otherwise stated, upon reception of an unexpected INIT for
* this association, the endpoint shall generate an INIT ACK with a
* State Cookie. In the outbound INIT ACK the endpoint MUST copy its
* current Verification Tag and peer's Verification Tag into a reserved
* place within the state cookie. We shall refer to these locations as
* the Peer's-Tie-Tag and the Local-Tie-Tag. The outbound SCTP packet
* containing this INIT ACK MUST carry a Verification Tag value equal to
* the Initiation Tag found in the unexpected INIT. And the INIT ACK
* MUST contain a new Initiation Tag (randomly generated see Section
* 5.3.1). Other parameters for the endpoint SHOULD be copied from the
* existing parameters of the association (e.g. number of outbound
* streams) into the INIT ACK and cookie.
*
* After sending out the INIT ACK, the endpoint shall take no further
* actions, i.e., the existing association, including its current state,
* and the corresponding TCB MUST NOT be changed.
*
* Note: Only when a TCB exists and the association is not in a COOKIE-
* WAIT state are the Tie-Tags populated. For a normal association INIT
* (i.e. the endpoint is in a COOKIE-WAIT state), the Tie-Tags MUST be
* set to 0 (indicating that no previous TCB existed). The INIT ACK and
* State Cookie are populated as specified in section 5.2.1.
*
* Verification Tag: Not specified, but an INIT has no way of knowing
* what the verification tag could be, so we ignore it.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_5_2_2_dupinit(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* Call helper to do the real work for both simulataneous and
* duplicate INIT chunk handling.
*/
return sctp_sf_do_unexpected_init(ep, asoc, type, arg, commands);
}
/*
* Unexpected INIT-ACK handler.
*
* Section 5.2.3
* If an INIT ACK received by an endpoint in any state other than the
* COOKIE-WAIT state, the endpoint should discard the INIT ACK chunk.
* An unexpected INIT ACK usually indicates the processing of an old or
* duplicated INIT chunk.
*/
sctp_disposition_t sctp_sf_do_5_2_3_initack(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg, sctp_cmd_seq_t *commands)
{
/* Per the above section, we'll discard the chunk if we have an
* endpoint. If this is an OOTB INIT-ACK, treat it as such.
*/
if (ep == sctp_sk((sctp_get_ctl_sock()))->ep)
return sctp_sf_ootb(ep, asoc, type, arg, commands);
else
return sctp_sf_discard_chunk(ep, asoc, type, arg, commands);
}
/* Unexpected COOKIE-ECHO handler for peer restart (Table 2, action 'A')
*
* Section 5.2.4
* A) In this case, the peer may have restarted.
*/
static sctp_disposition_t sctp_sf_do_dupcook_a(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
struct sctp_chunk *chunk,
sctp_cmd_seq_t *commands,
struct sctp_association *new_asoc)
{
sctp_init_chunk_t *peer_init;
struct sctp_ulpevent *ev;
struct sctp_chunk *repl;
struct sctp_chunk *err;
sctp_disposition_t disposition;
/* new_asoc is a brand-new association, so these are not yet
* side effects--it is safe to run them here.
*/
peer_init = &chunk->subh.cookie_hdr->c.peer_init[0];
if (!sctp_process_init(new_asoc, chunk->chunk_hdr->type,
sctp_source(chunk), peer_init,
GFP_ATOMIC))
goto nomem;
/* Make sure no new addresses are being added during the
* restart. Though this is a pretty complicated attack
* since you'd have to get inside the cookie.
*/
if (!sctp_sf_check_restart_addrs(new_asoc, asoc, chunk, commands)) {
return SCTP_DISPOSITION_CONSUME;
}
/* If the endpoint is in the SHUTDOWN-ACK-SENT state and recognizes
* the peer has restarted (Action A), it MUST NOT setup a new
* association but instead resend the SHUTDOWN ACK and send an ERROR
* chunk with a "Cookie Received while Shutting Down" error cause to
* its peer.
*/
if (sctp_state(asoc, SHUTDOWN_ACK_SENT)) {
disposition = sctp_sf_do_9_2_reshutack(ep, asoc,
SCTP_ST_CHUNK(chunk->chunk_hdr->type),
chunk, commands);
if (SCTP_DISPOSITION_NOMEM == disposition)
goto nomem;
err = sctp_make_op_error(asoc, chunk,
SCTP_ERROR_COOKIE_IN_SHUTDOWN,
NULL, 0);
if (err)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(err));
return SCTP_DISPOSITION_CONSUME;
}
/* For now, fail any unsent/unacked data. Consider the optional
* choice of resending of this data.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_PURGE_OUTQUEUE, SCTP_NULL());
repl = sctp_make_cookie_ack(new_asoc, chunk);
if (!repl)
goto nomem;
/* Report association restart to upper layer. */
ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_RESTART, 0,
new_asoc->c.sinit_num_ostreams,
new_asoc->c.sinit_max_instreams,
NULL, GFP_ATOMIC);
if (!ev)
goto nomem_ev;
/* Update the content of current association. */
sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_ASSOC, SCTP_ASOC(new_asoc));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
return SCTP_DISPOSITION_CONSUME;
nomem_ev:
sctp_chunk_free(repl);
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/* Unexpected COOKIE-ECHO handler for setup collision (Table 2, action 'B')
*
* Section 5.2.4
* B) In this case, both sides may be attempting to start an association
* at about the same time but the peer endpoint started its INIT
* after responding to the local endpoint's INIT
*/
/* This case represents an initialization collision. */
static sctp_disposition_t sctp_sf_do_dupcook_b(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
struct sctp_chunk *chunk,
sctp_cmd_seq_t *commands,
struct sctp_association *new_asoc)
{
sctp_init_chunk_t *peer_init;
struct sctp_chunk *repl;
/* new_asoc is a brand-new association, so these are not yet
* side effects--it is safe to run them here.
*/
peer_init = &chunk->subh.cookie_hdr->c.peer_init[0];
if (!sctp_process_init(new_asoc, chunk->chunk_hdr->type,
sctp_source(chunk), peer_init,
GFP_ATOMIC))
goto nomem;
/* Update the content of current association. */
sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_ASSOC, SCTP_ASOC(new_asoc));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_ESTABLISHED));
SCTP_INC_STATS(SCTP_MIB_CURRESTAB);
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL());
repl = sctp_make_cookie_ack(new_asoc, chunk);
if (!repl)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
/* RFC 2960 5.1 Normal Establishment of an Association
*
* D) IMPLEMENTATION NOTE: An implementation may choose to
* send the Communication Up notification to the SCTP user
* upon reception of a valid COOKIE ECHO chunk.
*
* Sadly, this needs to be implemented as a side-effect, because
* we are not guaranteed to have set the association id of the real
* association and so these notifications need to be delayed until
* the association id is allocated.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_CHANGE, SCTP_U8(SCTP_COMM_UP));
/* Sockets API Draft Section 5.3.1.6
* When a peer sends a Adaptation Layer Indication parameter , SCTP
* delivers this notification to inform the application that of the
* peers requested adaptation layer.
*
* This also needs to be done as a side effect for the same reason as
* above.
*/
if (asoc->peer.adaptation_ind)
sctp_add_cmd_sf(commands, SCTP_CMD_ADAPTATION_IND, SCTP_NULL());
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/* Unexpected COOKIE-ECHO handler for setup collision (Table 2, action 'C')
*
* Section 5.2.4
* C) In this case, the local endpoint's cookie has arrived late.
* Before it arrived, the local endpoint sent an INIT and received an
* INIT-ACK and finally sent a COOKIE ECHO with the peer's same tag
* but a new tag of its own.
*/
/* This case represents an initialization collision. */
static sctp_disposition_t sctp_sf_do_dupcook_c(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
struct sctp_chunk *chunk,
sctp_cmd_seq_t *commands,
struct sctp_association *new_asoc)
{
/* The cookie should be silently discarded.
* The endpoint SHOULD NOT change states and should leave
* any timers running.
*/
return SCTP_DISPOSITION_DISCARD;
}
/* Unexpected COOKIE-ECHO handler lost chunk (Table 2, action 'D')
*
* Section 5.2.4
*
* D) When both local and remote tags match the endpoint should always
* enter the ESTABLISHED state, if it has not already done so.
*/
/* This case represents an initialization collision. */
static sctp_disposition_t sctp_sf_do_dupcook_d(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
struct sctp_chunk *chunk,
sctp_cmd_seq_t *commands,
struct sctp_association *new_asoc)
{
struct sctp_ulpevent *ev = NULL, *ai_ev = NULL;
struct sctp_chunk *repl;
/* Clarification from Implementor's Guide:
* D) When both local and remote tags match the endpoint should
* enter the ESTABLISHED state, if it is in the COOKIE-ECHOED state.
* It should stop any cookie timer that may be running and send
* a COOKIE ACK.
*/
/* Don't accidentally move back into established state. */
if (asoc->state < SCTP_STATE_ESTABLISHED) {
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_ESTABLISHED));
SCTP_INC_STATS(SCTP_MIB_CURRESTAB);
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START,
SCTP_NULL());
/* RFC 2960 5.1 Normal Establishment of an Association
*
* D) IMPLEMENTATION NOTE: An implementation may choose
* to send the Communication Up notification to the
* SCTP user upon reception of a valid COOKIE
* ECHO chunk.
*/
ev = sctp_ulpevent_make_assoc_change(asoc, 0,
SCTP_COMM_UP, 0,
asoc->c.sinit_num_ostreams,
asoc->c.sinit_max_instreams,
NULL, GFP_ATOMIC);
if (!ev)
goto nomem;
/* Sockets API Draft Section 5.3.1.6
* When a peer sends a Adaptation Layer Indication parameter,
* SCTP delivers this notification to inform the application
* that of the peers requested adaptation layer.
*/
if (asoc->peer.adaptation_ind) {
ai_ev = sctp_ulpevent_make_adaptation_indication(asoc,
GFP_ATOMIC);
if (!ai_ev)
goto nomem;
}
}
repl = sctp_make_cookie_ack(new_asoc, chunk);
if (!repl)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
if (ev)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(ev));
if (ai_ev)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(ai_ev));
return SCTP_DISPOSITION_CONSUME;
nomem:
if (ai_ev)
sctp_ulpevent_free(ai_ev);
if (ev)
sctp_ulpevent_free(ev);
return SCTP_DISPOSITION_NOMEM;
}
/*
* Handle a duplicate COOKIE-ECHO. This usually means a cookie-carrying
* chunk was retransmitted and then delayed in the network.
*
* Section: 5.2.4 Handle a COOKIE ECHO when a TCB exists
*
* Verification Tag: None. Do cookie validation.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_5_2_4_dupcook(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
sctp_disposition_t retval;
struct sctp_chunk *chunk = arg;
struct sctp_association *new_asoc;
int error = 0;
char action;
struct sctp_chunk *err_chk_p;
/* Make sure that the chunk has a valid length from the protocol
* perspective. In this case check to make sure we have at least
* enough for the chunk header. Cookie length verification is
* done later.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* "Decode" the chunk. We have no optional parameters so we
* are in good shape.
*/
chunk->subh.cookie_hdr = (struct sctp_signed_cookie *)chunk->skb->data;
if (!pskb_pull(chunk->skb, ntohs(chunk->chunk_hdr->length) -
sizeof(sctp_chunkhdr_t)))
goto nomem;
/* In RFC 2960 5.2.4 3, if both Verification Tags in the State Cookie
* of a duplicate COOKIE ECHO match the Verification Tags of the
* current association, consider the State Cookie valid even if
* the lifespan is exceeded.
*/
new_asoc = sctp_unpack_cookie(ep, asoc, chunk, GFP_ATOMIC, &error,
&err_chk_p);
/* FIXME:
* If the re-build failed, what is the proper error path
* from here?
*
* [We should abort the association. --piggy]
*/
if (!new_asoc) {
/* FIXME: Several errors are possible. A bad cookie should
* be silently discarded, but think about logging it too.
*/
switch (error) {
case -SCTP_IERROR_NOMEM:
goto nomem;
case -SCTP_IERROR_STALE_COOKIE:
sctp_send_stale_cookie_err(ep, asoc, chunk, commands,
err_chk_p);
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
case -SCTP_IERROR_BAD_SIG:
default:
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
}
/* Compare the tie_tag in cookie with the verification tag of
* current association.
*/
action = sctp_tietags_compare(new_asoc, asoc);
switch (action) {
case 'A': /* Association restart. */
retval = sctp_sf_do_dupcook_a(ep, asoc, chunk, commands,
new_asoc);
break;
case 'B': /* Collision case B. */
retval = sctp_sf_do_dupcook_b(ep, asoc, chunk, commands,
new_asoc);
break;
case 'C': /* Collision case C. */
retval = sctp_sf_do_dupcook_c(ep, asoc, chunk, commands,
new_asoc);
break;
case 'D': /* Collision case D. */
retval = sctp_sf_do_dupcook_d(ep, asoc, chunk, commands,
new_asoc);
break;
default: /* Discard packet for all others. */
retval = sctp_sf_pdiscard(ep, asoc, type, arg, commands);
break;
}
/* Delete the tempory new association. */
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc));
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
return retval;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* Process an ABORT. (SHUTDOWN-PENDING state)
*
* See sctp_sf_do_9_1_abort().
*/
sctp_disposition_t sctp_sf_shutdown_pending_abort(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
if (!sctp_vtag_verify_either(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the ABORT chunk has a valid length.
* Since this is an ABORT chunk, we have to discard it
* because of the following text:
* RFC 2960, Section 3.3.7
* If an endpoint receives an ABORT with a format error or for an
* association that doesn't exist, it MUST silently discard it.
* Becasue the length is "invalid", we can't really discard just
* as we do not know its true length. So, to be safe, discard the
* packet.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t)))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* ADD-IP: Special case for ABORT chunks
* F4) One special consideration is that ABORT Chunks arriving
* destined to the IP address being deleted MUST be
* ignored (see Section 5.3.1 for further details).
*/
if (SCTP_ADDR_DEL ==
sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest))
return sctp_sf_discard_chunk(ep, asoc, type, arg, commands);
return __sctp_sf_do_9_1_abort(ep, asoc, type, arg, commands);
}
/*
* Process an ABORT. (SHUTDOWN-SENT state)
*
* See sctp_sf_do_9_1_abort().
*/
sctp_disposition_t sctp_sf_shutdown_sent_abort(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
if (!sctp_vtag_verify_either(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the ABORT chunk has a valid length.
* Since this is an ABORT chunk, we have to discard it
* because of the following text:
* RFC 2960, Section 3.3.7
* If an endpoint receives an ABORT with a format error or for an
* association that doesn't exist, it MUST silently discard it.
* Becasue the length is "invalid", we can't really discard just
* as we do not know its true length. So, to be safe, discard the
* packet.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t)))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* ADD-IP: Special case for ABORT chunks
* F4) One special consideration is that ABORT Chunks arriving
* destined to the IP address being deleted MUST be
* ignored (see Section 5.3.1 for further details).
*/
if (SCTP_ADDR_DEL ==
sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest))
return sctp_sf_discard_chunk(ep, asoc, type, arg, commands);
/* Stop the T2-shutdown timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
/* Stop the T5-shutdown guard timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
return __sctp_sf_do_9_1_abort(ep, asoc, type, arg, commands);
}
/*
* Process an ABORT. (SHUTDOWN-ACK-SENT state)
*
* See sctp_sf_do_9_1_abort().
*/
sctp_disposition_t sctp_sf_shutdown_ack_sent_abort(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* The same T2 timer, so we should be able to use
* common function with the SHUTDOWN-SENT state.
*/
return sctp_sf_shutdown_sent_abort(ep, asoc, type, arg, commands);
}
/*
* Handle an Error received in COOKIE_ECHOED state.
*
* Only handle the error type of stale COOKIE Error, the other errors will
* be ignored.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_cookie_echoed_err(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
sctp_errhdr_t *err;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the ERROR chunk has a valid length.
* The parameter walking depends on this as well.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_operr_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Process the error here */
/* FUTURE FIXME: When PR-SCTP related and other optional
* parms are emitted, this will have to change to handle multiple
* errors.
*/
sctp_walk_errors(err, chunk->chunk_hdr) {
if (SCTP_ERROR_STALE_COOKIE == err->cause)
return sctp_sf_do_5_2_6_stale(ep, asoc, type,
arg, commands);
}
/* It is possible to have malformed error causes, and that
* will cause us to end the walk early. However, since
* we are discarding the packet, there should be no adverse
* affects.
*/
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
/*
* Handle a Stale COOKIE Error
*
* Section: 5.2.6 Handle Stale COOKIE Error
* If the association is in the COOKIE-ECHOED state, the endpoint may elect
* one of the following three alternatives.
* ...
* 3) Send a new INIT chunk to the endpoint, adding a Cookie
* Preservative parameter requesting an extension to the lifetime of
* the State Cookie. When calculating the time extension, an
* implementation SHOULD use the RTT information measured based on the
* previous COOKIE ECHO / ERROR exchange, and should add no more
* than 1 second beyond the measured RTT, due to long State Cookie
* lifetimes making the endpoint more subject to a replay attack.
*
* Verification Tag: Not explicit, but safe to ignore.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
static sctp_disposition_t sctp_sf_do_5_2_6_stale(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
time_t stale;
sctp_cookie_preserve_param_t bht;
sctp_errhdr_t *err;
struct sctp_chunk *reply;
struct sctp_bind_addr *bp;
int attempts = asoc->init_err_counter + 1;
if (attempts > asoc->max_init_attempts) {
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ETIMEDOUT));
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_PERR(SCTP_ERROR_STALE_COOKIE));
return SCTP_DISPOSITION_DELETE_TCB;
}
err = (sctp_errhdr_t *)(chunk->skb->data);
/* When calculating the time extension, an implementation
* SHOULD use the RTT information measured based on the
* previous COOKIE ECHO / ERROR exchange, and should add no
* more than 1 second beyond the measured RTT, due to long
* State Cookie lifetimes making the endpoint more subject to
* a replay attack.
* Measure of Staleness's unit is usec. (1/1000000 sec)
* Suggested Cookie Life-span Increment's unit is msec.
* (1/1000 sec)
* In general, if you use the suggested cookie life, the value
* found in the field of measure of staleness should be doubled
* to give ample time to retransmit the new cookie and thus
* yield a higher probability of success on the reattempt.
*/
stale = ntohl(*(__be32 *)((u8 *)err + sizeof(sctp_errhdr_t)));
stale = (stale * 2) / 1000;
bht.param_hdr.type = SCTP_PARAM_COOKIE_PRESERVATIVE;
bht.param_hdr.length = htons(sizeof(bht));
bht.lifespan_increment = htonl(stale);
/* Build that new INIT chunk. */
bp = (struct sctp_bind_addr *) &asoc->base.bind_addr;
reply = sctp_make_init(asoc, bp, GFP_ATOMIC, sizeof(bht));
if (!reply)
goto nomem;
sctp_addto_chunk(reply, sizeof(bht), &bht);
/* Clear peer's init_tag cached in assoc as we are sending a new INIT */
sctp_add_cmd_sf(commands, SCTP_CMD_CLEAR_INIT_TAG, SCTP_NULL());
/* Stop pending T3-rtx and heartbeat timers */
sctp_add_cmd_sf(commands, SCTP_CMD_T3_RTX_TIMERS_STOP, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL());
/* Delete non-primary peer ip addresses since we are transitioning
* back to the COOKIE-WAIT state
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DEL_NON_PRIMARY, SCTP_NULL());
/* If we've sent any data bundled with COOKIE-ECHO we will need to
* resend
*/
sctp_add_cmd_sf(commands, SCTP_CMD_T1_RETRAN,
SCTP_TRANSPORT(asoc->peer.primary_path));
/* Cast away the const modifier, as we want to just
* rerun it through as a sideffect.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_INC, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_COOKIE_WAIT));
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* Process an ABORT.
*
* Section: 9.1
* After checking the Verification Tag, the receiving endpoint shall
* remove the association from its record, and shall report the
* termination to its upper layer.
*
* Verification Tag: 8.5.1 Exceptions in Verification Tag Rules
* B) Rules for packet carrying ABORT:
*
* - The endpoint shall always fill in the Verification Tag field of the
* outbound packet with the destination endpoint's tag value if it
* is known.
*
* - If the ABORT is sent in response to an OOTB packet, the endpoint
* MUST follow the procedure described in Section 8.4.
*
* - The receiver MUST accept the packet if the Verification Tag
* matches either its own tag, OR the tag of its peer. Otherwise, the
* receiver MUST silently discard the packet and take no further
* action.
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_9_1_abort(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
if (!sctp_vtag_verify_either(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the ABORT chunk has a valid length.
* Since this is an ABORT chunk, we have to discard it
* because of the following text:
* RFC 2960, Section 3.3.7
* If an endpoint receives an ABORT with a format error or for an
* association that doesn't exist, it MUST silently discard it.
* Becasue the length is "invalid", we can't really discard just
* as we do not know its true length. So, to be safe, discard the
* packet.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t)))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* ADD-IP: Special case for ABORT chunks
* F4) One special consideration is that ABORT Chunks arriving
* destined to the IP address being deleted MUST be
* ignored (see Section 5.3.1 for further details).
*/
if (SCTP_ADDR_DEL ==
sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest))
return sctp_sf_discard_chunk(ep, asoc, type, arg, commands);
return __sctp_sf_do_9_1_abort(ep, asoc, type, arg, commands);
}
static sctp_disposition_t __sctp_sf_do_9_1_abort(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
unsigned len;
__be16 error = SCTP_ERROR_NO_ERROR;
/* See if we have an error cause code in the chunk. */
len = ntohs(chunk->chunk_hdr->length);
if (len >= sizeof(struct sctp_chunkhdr) + sizeof(struct sctp_errhdr))
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(ECONNRESET));
/* ASSOC_FAILED will DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_PERR(error));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_DISPOSITION_ABORT;
}
/*
* Process an ABORT. (COOKIE-WAIT state)
*
* See sctp_sf_do_9_1_abort() above.
*/
sctp_disposition_t sctp_sf_cookie_wait_abort(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
unsigned len;
__be16 error = SCTP_ERROR_NO_ERROR;
if (!sctp_vtag_verify_either(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the ABORT chunk has a valid length.
* Since this is an ABORT chunk, we have to discard it
* because of the following text:
* RFC 2960, Section 3.3.7
* If an endpoint receives an ABORT with a format error or for an
* association that doesn't exist, it MUST silently discard it.
* Becasue the length is "invalid", we can't really discard just
* as we do not know its true length. So, to be safe, discard the
* packet.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t)))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* See if we have an error cause code in the chunk. */
len = ntohs(chunk->chunk_hdr->length);
if (len >= sizeof(struct sctp_chunkhdr) + sizeof(struct sctp_errhdr))
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
return sctp_stop_t1_and_abort(commands, error, ECONNREFUSED, asoc,
chunk->transport);
}
/*
* Process an incoming ICMP as an ABORT. (COOKIE-WAIT state)
*/
sctp_disposition_t sctp_sf_cookie_wait_icmp_abort(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
return sctp_stop_t1_and_abort(commands, SCTP_ERROR_NO_ERROR,
ENOPROTOOPT, asoc,
(struct sctp_transport *)arg);
}
/*
* Process an ABORT. (COOKIE-ECHOED state)
*/
sctp_disposition_t sctp_sf_cookie_echoed_abort(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* There is a single T1 timer, so we should be able to use
* common function with the COOKIE-WAIT state.
*/
return sctp_sf_cookie_wait_abort(ep, asoc, type, arg, commands);
}
/*
* Stop T1 timer and abort association with "INIT failed".
*
* This is common code called by several sctp_sf_*_abort() functions above.
*/
static sctp_disposition_t sctp_stop_t1_and_abort(sctp_cmd_seq_t *commands,
__be16 error, int sk_err,
const struct sctp_association *asoc,
struct sctp_transport *transport)
{
SCTP_DEBUG_PRINTK("ABORT received (INIT).\n");
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(sk_err));
/* CMD_INIT_FAILED will DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_PERR(error));
return SCTP_DISPOSITION_ABORT;
}
/*
* sctp_sf_do_9_2_shut
*
* Section: 9.2
* Upon the reception of the SHUTDOWN, the peer endpoint shall
* - enter the SHUTDOWN-RECEIVED state,
*
* - stop accepting new data from its SCTP user
*
* - verify, by checking the Cumulative TSN Ack field of the chunk,
* that all its outstanding DATA chunks have been received by the
* SHUTDOWN sender.
*
* Once an endpoint as reached the SHUTDOWN-RECEIVED state it MUST NOT
* send a SHUTDOWN in response to a ULP request. And should discard
* subsequent SHUTDOWN chunks.
*
* If there are still outstanding DATA chunks left, the SHUTDOWN
* receiver shall continue to follow normal data transmission
* procedures defined in Section 6 until all outstanding DATA chunks
* are acknowledged; however, the SHUTDOWN receiver MUST NOT accept
* new data from its SCTP user.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_9_2_shutdown(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
sctp_shutdownhdr_t *sdh;
sctp_disposition_t disposition;
struct sctp_ulpevent *ev;
__u32 ctsn;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the SHUTDOWN chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk,
sizeof(struct sctp_shutdown_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Convert the elaborate header. */
sdh = (sctp_shutdownhdr_t *)chunk->skb->data;
skb_pull(chunk->skb, sizeof(sctp_shutdownhdr_t));
chunk->subh.shutdown_hdr = sdh;
ctsn = ntohl(sdh->cum_tsn_ack);
/* If Cumulative TSN Ack beyond the max tsn currently
* send, terminating the association and respond to the
* sender with an ABORT.
*/
if (!TSN_lt(ctsn, asoc->next_tsn))
return sctp_sf_violation_ctsn(ep, asoc, type, arg, commands);
/* API 5.3.1.5 SCTP_SHUTDOWN_EVENT
* When a peer sends a SHUTDOWN, SCTP delivers this notification to
* inform the application that it should cease sending data.
*/
ev = sctp_ulpevent_make_shutdown_event(asoc, 0, GFP_ATOMIC);
if (!ev) {
disposition = SCTP_DISPOSITION_NOMEM;
goto out;
}
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
/* Upon the reception of the SHUTDOWN, the peer endpoint shall
* - enter the SHUTDOWN-RECEIVED state,
* - stop accepting new data from its SCTP user
*
* [This is implicit in the new state.]
*/
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_SHUTDOWN_RECEIVED));
disposition = SCTP_DISPOSITION_CONSUME;
if (sctp_outq_is_empty(&asoc->outqueue)) {
disposition = sctp_sf_do_9_2_shutdown_ack(ep, asoc, type,
arg, commands);
}
if (SCTP_DISPOSITION_NOMEM == disposition)
goto out;
/* - verify, by checking the Cumulative TSN Ack field of the
* chunk, that all its outstanding DATA chunks have been
* received by the SHUTDOWN sender.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_CTSN,
SCTP_BE32(chunk->subh.shutdown_hdr->cum_tsn_ack));
out:
return disposition;
}
/*
* sctp_sf_do_9_2_shut_ctsn
*
* Once an endpoint has reached the SHUTDOWN-RECEIVED state,
* it MUST NOT send a SHUTDOWN in response to a ULP request.
* The Cumulative TSN Ack of the received SHUTDOWN chunk
* MUST be processed.
*/
sctp_disposition_t sctp_sf_do_9_2_shut_ctsn(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
sctp_shutdownhdr_t *sdh;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the SHUTDOWN chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk,
sizeof(struct sctp_shutdown_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
sdh = (sctp_shutdownhdr_t *)chunk->skb->data;
/* If Cumulative TSN Ack beyond the max tsn currently
* send, terminating the association and respond to the
* sender with an ABORT.
*/
if (!TSN_lt(ntohl(sdh->cum_tsn_ack), asoc->next_tsn))
return sctp_sf_violation_ctsn(ep, asoc, type, arg, commands);
/* verify, by checking the Cumulative TSN Ack field of the
* chunk, that all its outstanding DATA chunks have been
* received by the SHUTDOWN sender.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_CTSN,
SCTP_BE32(sdh->cum_tsn_ack));
return SCTP_DISPOSITION_CONSUME;
}
/* RFC 2960 9.2
* If an endpoint is in SHUTDOWN-ACK-SENT state and receives an INIT chunk
* (e.g., if the SHUTDOWN COMPLETE was lost) with source and destination
* transport addresses (either in the IP addresses or in the INIT chunk)
* that belong to this association, it should discard the INIT chunk and
* retransmit the SHUTDOWN ACK chunk.
*/
sctp_disposition_t sctp_sf_do_9_2_reshutack(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = (struct sctp_chunk *) arg;
struct sctp_chunk *reply;
/* Make sure that the chunk has a valid length */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Since we are not going to really process this INIT, there
* is no point in verifying chunk boundries. Just generate
* the SHUTDOWN ACK.
*/
reply = sctp_make_shutdown_ack(asoc, chunk);
if (NULL == reply)
goto nomem;
/* Set the transport for the SHUTDOWN ACK chunk and the timeout for
* the T2-SHUTDOWN timer.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply));
/* and restart the T2-shutdown timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* sctp_sf_do_ecn_cwr
*
* Section: Appendix A: Explicit Congestion Notification
*
* CWR:
*
* RFC 2481 details a specific bit for a sender to send in the header of
* its next outbound TCP segment to indicate to its peer that it has
* reduced its congestion window. This is termed the CWR bit. For
* SCTP the same indication is made by including the CWR chunk.
* This chunk contains one data element, i.e. the TSN number that
* was sent in the ECNE chunk. This element represents the lowest
* TSN number in the datagram that was originally marked with the
* CE bit.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_ecn_cwr(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
sctp_cwrhdr_t *cwr;
struct sctp_chunk *chunk = arg;
u32 lowest_tsn;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_ecne_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
cwr = (sctp_cwrhdr_t *) chunk->skb->data;
skb_pull(chunk->skb, sizeof(sctp_cwrhdr_t));
lowest_tsn = ntohl(cwr->lowest_tsn);
/* Does this CWR ack the last sent congestion notification? */
if (TSN_lte(asoc->last_ecne_tsn, lowest_tsn)) {
/* Stop sending ECNE. */
sctp_add_cmd_sf(commands,
SCTP_CMD_ECN_CWR,
SCTP_U32(lowest_tsn));
}
return SCTP_DISPOSITION_CONSUME;
}
/*
* sctp_sf_do_ecne
*
* Section: Appendix A: Explicit Congestion Notification
*
* ECN-Echo
*
* RFC 2481 details a specific bit for a receiver to send back in its
* TCP acknowledgements to notify the sender of the Congestion
* Experienced (CE) bit having arrived from the network. For SCTP this
* same indication is made by including the ECNE chunk. This chunk
* contains one data element, i.e. the lowest TSN associated with the IP
* datagram marked with the CE bit.....
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_ecne(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
sctp_ecnehdr_t *ecne;
struct sctp_chunk *chunk = arg;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_ecne_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
ecne = (sctp_ecnehdr_t *) chunk->skb->data;
skb_pull(chunk->skb, sizeof(sctp_ecnehdr_t));
/* If this is a newer ECNE than the last CWR packet we sent out */
sctp_add_cmd_sf(commands, SCTP_CMD_ECN_ECNE,
SCTP_U32(ntohl(ecne->lowest_tsn)));
return SCTP_DISPOSITION_CONSUME;
}
/*
* Section: 6.2 Acknowledgement on Reception of DATA Chunks
*
* The SCTP endpoint MUST always acknowledge the reception of each valid
* DATA chunk.
*
* The guidelines on delayed acknowledgement algorithm specified in
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically, an
* acknowledgement SHOULD be generated for at least every second packet
* (not every second DATA chunk) received, and SHOULD be generated within
* 200 ms of the arrival of any unacknowledged DATA chunk. In some
* situations it may be beneficial for an SCTP transmitter to be more
* conservative than the algorithms detailed in this document allow.
* However, an SCTP transmitter MUST NOT be more aggressive than the
* following algorithms allow.
*
* A SCTP receiver MUST NOT generate more than one SACK for every
* incoming packet, other than to update the offered window as the
* receiving application consumes new data.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_eat_data_6_2(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
int error;
if (!sctp_vtag_verify(chunk, asoc)) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
SCTP_NULL());
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_data_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
error = sctp_eat_data(asoc, chunk, commands );
switch (error) {
case SCTP_IERROR_NO_ERROR:
break;
case SCTP_IERROR_HIGH_TSN:
case SCTP_IERROR_BAD_STREAM:
SCTP_INC_STATS(SCTP_MIB_IN_DATA_CHUNK_DISCARDS);
goto discard_noforce;
case SCTP_IERROR_DUP_TSN:
case SCTP_IERROR_IGNORE_TSN:
SCTP_INC_STATS(SCTP_MIB_IN_DATA_CHUNK_DISCARDS);
goto discard_force;
case SCTP_IERROR_NO_DATA:
goto consume;
default:
BUG();
}
if (asoc->autoclose) {
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
}
/* If this is the last chunk in a packet, we need to count it
* toward sack generation. Note that we need to SACK every
* OTHER packet containing data chunks, EVEN IF WE DISCARD
* THEM. We elect to NOT generate SACK's if the chunk fails
* the verification tag test.
*
* RFC 2960 6.2 Acknowledgement on Reception of DATA Chunks
*
* The SCTP endpoint MUST always acknowledge the reception of
* each valid DATA chunk.
*
* The guidelines on delayed acknowledgement algorithm
* specified in Section 4.2 of [RFC2581] SHOULD be followed.
* Specifically, an acknowledgement SHOULD be generated for at
* least every second packet (not every second DATA chunk)
* received, and SHOULD be generated within 200 ms of the
* arrival of any unacknowledged DATA chunk. In some
* situations it may be beneficial for an SCTP transmitter to
* be more conservative than the algorithms detailed in this
* document allow. However, an SCTP transmitter MUST NOT be
* more aggressive than the following algorithms allow.
*/
if (chunk->end_of_packet)
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_NOFORCE());
return SCTP_DISPOSITION_CONSUME;
discard_force:
/* RFC 2960 6.2 Acknowledgement on Reception of DATA Chunks
*
* When a packet arrives with duplicate DATA chunk(s) and with
* no new DATA chunk(s), the endpoint MUST immediately send a
* SACK with no delay. If a packet arrives with duplicate
* DATA chunk(s) bundled with new DATA chunks, the endpoint
* MAY immediately send a SACK. Normally receipt of duplicate
* DATA chunks will occur when the original SACK chunk was lost
* and the peer's RTO has expired. The duplicate TSN number(s)
* SHOULD be reported in the SACK as duplicate.
*/
/* In our case, we split the MAY SACK advice up whether or not
* the last chunk is a duplicate.'
*/
if (chunk->end_of_packet)
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE());
return SCTP_DISPOSITION_DISCARD;
discard_noforce:
if (chunk->end_of_packet)
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_NOFORCE());
return SCTP_DISPOSITION_DISCARD;
consume:
return SCTP_DISPOSITION_CONSUME;
}
/*
* sctp_sf_eat_data_fast_4_4
*
* Section: 4 (4)
* (4) In SHUTDOWN-SENT state the endpoint MUST acknowledge any received
* DATA chunks without delay.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_eat_data_fast_4_4(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
int error;
if (!sctp_vtag_verify(chunk, asoc)) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
SCTP_NULL());
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_data_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
error = sctp_eat_data(asoc, chunk, commands );
switch (error) {
case SCTP_IERROR_NO_ERROR:
case SCTP_IERROR_HIGH_TSN:
case SCTP_IERROR_DUP_TSN:
case SCTP_IERROR_IGNORE_TSN:
case SCTP_IERROR_BAD_STREAM:
break;
case SCTP_IERROR_NO_DATA:
goto consume;
default:
BUG();
}
/* Go a head and force a SACK, since we are shutting down. */
/* Implementor's Guide.
*
* While in SHUTDOWN-SENT state, the SHUTDOWN sender MUST immediately
* respond to each received packet containing one or more DATA chunk(s)
* with a SACK, a SHUTDOWN chunk, and restart the T2-shutdown timer
*/
if (chunk->end_of_packet) {
/* We must delay the chunk creation since the cumulative
* TSN has not been updated yet.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SHUTDOWN, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE());
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
}
consume:
return SCTP_DISPOSITION_CONSUME;
}
/*
* Section: 6.2 Processing a Received SACK
* D) Any time a SACK arrives, the endpoint performs the following:
*
* i) If Cumulative TSN Ack is less than the Cumulative TSN Ack Point,
* then drop the SACK. Since Cumulative TSN Ack is monotonically
* increasing, a SACK whose Cumulative TSN Ack is less than the
* Cumulative TSN Ack Point indicates an out-of-order SACK.
*
* ii) Set rwnd equal to the newly received a_rwnd minus the number
* of bytes still outstanding after processing the Cumulative TSN Ack
* and the Gap Ack Blocks.
*
* iii) If the SACK is missing a TSN that was previously
* acknowledged via a Gap Ack Block (e.g., the data receiver
* reneged on the data), then mark the corresponding DATA chunk
* as available for retransmit: Mark it as missing for fast
* retransmit as described in Section 7.2.4 and if no retransmit
* timer is running for the destination address to which the DATA
* chunk was originally transmitted, then T3-rtx is started for
* that destination address.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_eat_sack_6_2(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
sctp_sackhdr_t *sackh;
__u32 ctsn;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the SACK chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_sack_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Pull the SACK chunk from the data buffer */
sackh = sctp_sm_pull_sack(chunk);
/* Was this a bogus SACK? */
if (!sackh)
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
chunk->subh.sack_hdr = sackh;
ctsn = ntohl(sackh->cum_tsn_ack);
/* i) If Cumulative TSN Ack is less than the Cumulative TSN
* Ack Point, then drop the SACK. Since Cumulative TSN
* Ack is monotonically increasing, a SACK whose
* Cumulative TSN Ack is less than the Cumulative TSN Ack
* Point indicates an out-of-order SACK.
*/
if (TSN_lt(ctsn, asoc->ctsn_ack_point)) {
SCTP_DEBUG_PRINTK("ctsn %x\n", ctsn);
SCTP_DEBUG_PRINTK("ctsn_ack_point %x\n", asoc->ctsn_ack_point);
return SCTP_DISPOSITION_DISCARD;
}
/* If Cumulative TSN Ack beyond the max tsn currently
* send, terminating the association and respond to the
* sender with an ABORT.
*/
if (!TSN_lt(ctsn, asoc->next_tsn))
return sctp_sf_violation_ctsn(ep, asoc, type, arg, commands);
/* Return this SACK for further processing. */
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, SCTP_SACKH(sackh));
/* Note: We do the rest of the work on the PROCESS_SACK
* sideeffect.
*/
return SCTP_DISPOSITION_CONSUME;
}
/*
* Generate an ABORT in response to a packet.
*
* Section: 8.4 Handle "Out of the blue" Packets, sctpimpguide 2.41
*
* 8) The receiver should respond to the sender of the OOTB packet with
* an ABORT. When sending the ABORT, the receiver of the OOTB packet
* MUST fill in the Verification Tag field of the outbound packet
* with the value found in the Verification Tag field of the OOTB
* packet and set the T-bit in the Chunk Flags to indicate that the
* Verification Tag is reflected. After sending this ABORT, the
* receiver of the OOTB packet shall discard the OOTB packet and take
* no further action.
*
* Verification Tag:
*
* The return value is the disposition of the chunk.
*/
static sctp_disposition_t sctp_sf_tabort_8_4_8(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_packet *packet = NULL;
struct sctp_chunk *chunk = arg;
struct sctp_chunk *abort;
packet = sctp_ootb_pkt_new(asoc, chunk);
if (packet) {
/* Make an ABORT. The T bit will be set if the asoc
* is NULL.
*/
abort = sctp_make_abort(asoc, chunk, 0);
if (!abort) {
sctp_ootb_pkt_free(packet);
return SCTP_DISPOSITION_NOMEM;
}
/* Reflect vtag if T-Bit is set */
if (sctp_test_T_bit(abort))
packet->vtag = ntohl(chunk->sctp_hdr->vtag);
/* Set the skb to the belonging sock for accounting. */
abort->skb->sk = ep->base.sk;
sctp_packet_append_chunk(packet, abort);
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
SCTP_PACKET(packet));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
sctp_sf_pdiscard(ep, asoc, type, arg, commands);
return SCTP_DISPOSITION_CONSUME;
}
return SCTP_DISPOSITION_NOMEM;
}
/*
* Received an ERROR chunk from peer. Generate SCTP_REMOTE_ERROR
* event as ULP notification for each cause included in the chunk.
*
* API 5.3.1.3 - SCTP_REMOTE_ERROR
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_operr_notify(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the ERROR chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_operr_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_OPERR,
SCTP_CHUNK(chunk));
return SCTP_DISPOSITION_CONSUME;
}
/*
* Process an inbound SHUTDOWN ACK.
*
* From Section 9.2:
* Upon the receipt of the SHUTDOWN ACK, the SHUTDOWN sender shall
* stop the T2-shutdown timer, send a SHUTDOWN COMPLETE chunk to its
* peer, and remove all record of the association.
*
* The return value is the disposition.
*/
sctp_disposition_t sctp_sf_do_9_2_final(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_chunk *reply;
struct sctp_ulpevent *ev;
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the SHUTDOWN_ACK chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* 10.2 H) SHUTDOWN COMPLETE notification
*
* When SCTP completes the shutdown procedures (section 9.2) this
* notification is passed to the upper layer.
*/
ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_SHUTDOWN_COMP,
0, 0, 0, NULL, GFP_ATOMIC);
if (!ev)
goto nomem;
/* ...send a SHUTDOWN COMPLETE chunk to its peer, */
reply = sctp_make_shutdown_complete(asoc, chunk);
if (!reply)
goto nomem_chunk;
/* Do all the commands now (after allocation), so that we
* have consistent state if memory allocation failes
*/
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
/* Upon the receipt of the SHUTDOWN ACK, the SHUTDOWN sender shall
* stop the T2-shutdown timer,
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
SCTP_INC_STATS(SCTP_MIB_SHUTDOWNS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
/* ...and remove all record of the association. */
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
return SCTP_DISPOSITION_DELETE_TCB;
nomem_chunk:
sctp_ulpevent_free(ev);
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* RFC 2960, 8.4 - Handle "Out of the blue" Packets, sctpimpguide 2.41.
*
* 5) If the packet contains a SHUTDOWN ACK chunk, the receiver should
* respond to the sender of the OOTB packet with a SHUTDOWN COMPLETE.
* When sending the SHUTDOWN COMPLETE, the receiver of the OOTB
* packet must fill in the Verification Tag field of the outbound
* packet with the Verification Tag received in the SHUTDOWN ACK and
* set the T-bit in the Chunk Flags to indicate that the Verification
* Tag is reflected.
*
* 8) The receiver should respond to the sender of the OOTB packet with
* an ABORT. When sending the ABORT, the receiver of the OOTB packet
* MUST fill in the Verification Tag field of the outbound packet
* with the value found in the Verification Tag field of the OOTB
* packet and set the T-bit in the Chunk Flags to indicate that the
* Verification Tag is reflected. After sending this ABORT, the
* receiver of the OOTB packet shall discard the OOTB packet and take
* no further action.
*/
sctp_disposition_t sctp_sf_ootb(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sk_buff *skb = chunk->skb;
sctp_chunkhdr_t *ch;
__u8 *ch_end;
int ootb_shut_ack = 0;
SCTP_INC_STATS(SCTP_MIB_OUTOFBLUES);
ch = (sctp_chunkhdr_t *) chunk->chunk_hdr;
do {
/* Report violation if the chunk is less then minimal */
if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Now that we know we at least have a chunk header,
* do things that are type appropriate.
*/
if (SCTP_CID_SHUTDOWN_ACK == ch->type)
ootb_shut_ack = 1;
/* RFC 2960, Section 3.3.7
* Moreover, under any circumstances, an endpoint that
* receives an ABORT MUST NOT respond to that ABORT by
* sending an ABORT of its own.
*/
if (SCTP_CID_ABORT == ch->type)
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Report violation if chunk len overflows */
ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
if (ch_end > skb_tail_pointer(skb))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
ch = (sctp_chunkhdr_t *) ch_end;
} while (ch_end < skb_tail_pointer(skb));
if (ootb_shut_ack)
return sctp_sf_shut_8_4_5(ep, asoc, type, arg, commands);
else
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands);
}
/*
* Handle an "Out of the blue" SHUTDOWN ACK.
*
* Section: 8.4 5, sctpimpguide 2.41.
*
* 5) If the packet contains a SHUTDOWN ACK chunk, the receiver should
* respond to the sender of the OOTB packet with a SHUTDOWN COMPLETE.
* When sending the SHUTDOWN COMPLETE, the receiver of the OOTB
* packet must fill in the Verification Tag field of the outbound
* packet with the Verification Tag received in the SHUTDOWN ACK and
* set the T-bit in the Chunk Flags to indicate that the Verification
* Tag is reflected.
*
* Inputs
* (endpoint, asoc, type, arg, commands)
*
* Outputs
* (sctp_disposition_t)
*
* The return value is the disposition of the chunk.
*/
static sctp_disposition_t sctp_sf_shut_8_4_5(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_packet *packet = NULL;
struct sctp_chunk *chunk = arg;
struct sctp_chunk *shut;
packet = sctp_ootb_pkt_new(asoc, chunk);
if (packet) {
/* Make an SHUTDOWN_COMPLETE.
* The T bit will be set if the asoc is NULL.
*/
shut = sctp_make_shutdown_complete(asoc, chunk);
if (!shut) {
sctp_ootb_pkt_free(packet);
return SCTP_DISPOSITION_NOMEM;
}
/* Reflect vtag if T-Bit is set */
if (sctp_test_T_bit(shut))
packet->vtag = ntohl(chunk->sctp_hdr->vtag);
/* Set the skb to the belonging sock for accounting. */
shut->skb->sk = ep->base.sk;
sctp_packet_append_chunk(packet, shut);
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
SCTP_PACKET(packet));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
/* If the chunk length is invalid, we don't want to process
* the reset of the packet.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* We need to discard the rest of the packet to prevent
* potential bomming attacks from additional bundled chunks.
* This is documented in SCTP Threats ID.
*/
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
return SCTP_DISPOSITION_NOMEM;
}
/*
* Handle SHUTDOWN ACK in COOKIE_ECHOED or COOKIE_WAIT state.
*
* Verification Tag: 8.5.1 E) Rules for packet carrying a SHUTDOWN ACK
* If the receiver is in COOKIE-ECHOED or COOKIE-WAIT state the
* procedures in section 8.4 SHOULD be followed, in other words it
* should be treated as an Out Of The Blue packet.
* [This means that we do NOT check the Verification Tag on these
* chunks. --piggy ]
*
*/
sctp_disposition_t sctp_sf_do_8_5_1_E_sa(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
/* Make sure that the SHUTDOWN_ACK chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
/* Although we do have an association in this case, it corresponds
* to a restarted association. So the packet is treated as an OOTB
* packet and the state function that handles OOTB SHUTDOWN_ACK is
* called with a NULL association.
*/
SCTP_INC_STATS(SCTP_MIB_OUTOFBLUES);
return sctp_sf_shut_8_4_5(ep, NULL, type, arg, commands);
}
/* ADDIP Section 4.2 Upon reception of an ASCONF Chunk. */
sctp_disposition_t sctp_sf_do_asconf(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type, void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_chunk *asconf_ack = NULL;
struct sctp_paramhdr *err_param = NULL;
sctp_addiphdr_t *hdr;
union sctp_addr_param *addr_param;
__u32 serial;
int length;
if (!sctp_vtag_verify(chunk, asoc)) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
SCTP_NULL());
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
/* ADD-IP: Section 4.1.1
* This chunk MUST be sent in an authenticated way by using
* the mechanism defined in [I-D.ietf-tsvwg-sctp-auth]. If this chunk
* is received unauthenticated it MUST be silently discarded as
* described in [I-D.ietf-tsvwg-sctp-auth].
*/
if (!sctp_addip_noauth && !chunk->auth)
return sctp_sf_discard_chunk(ep, asoc, type, arg, commands);
/* Make sure that the ASCONF ADDIP chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_addip_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
hdr = (sctp_addiphdr_t *)chunk->skb->data;
serial = ntohl(hdr->serial);
addr_param = (union sctp_addr_param *)hdr->params;
length = ntohs(addr_param->p.length);
if (length < sizeof(sctp_paramhdr_t))
return sctp_sf_violation_paramlen(ep, asoc, type, arg,
(void *)addr_param, commands);
/* Verify the ASCONF chunk before processing it. */
if (!sctp_verify_asconf(asoc,
(sctp_paramhdr_t *)((void *)addr_param + length),
(void *)chunk->chunk_end,
&err_param))
return sctp_sf_violation_paramlen(ep, asoc, type, arg,
(void *)err_param, commands);
/* ADDIP 5.2 E1) Compare the value of the serial number to the value
* the endpoint stored in a new association variable
* 'Peer-Serial-Number'.
*/
if (serial == asoc->peer.addip_serial + 1) {
/* If this is the first instance of ASCONF in the packet,
* we can clean our old ASCONF-ACKs.
*/
if (!chunk->has_asconf)
sctp_assoc_clean_asconf_ack_cache(asoc);
/* ADDIP 5.2 E4) When the Sequence Number matches the next one
* expected, process the ASCONF as described below and after
* processing the ASCONF Chunk, append an ASCONF-ACK Chunk to
* the response packet and cache a copy of it (in the event it
* later needs to be retransmitted).
*
* Essentially, do V1-V5.
*/
asconf_ack = sctp_process_asconf((struct sctp_association *)
asoc, chunk);
if (!asconf_ack)
return SCTP_DISPOSITION_NOMEM;
} else if (serial < asoc->peer.addip_serial + 1) {
/* ADDIP 5.2 E2)
* If the value found in the Sequence Number is less than the
* ('Peer- Sequence-Number' + 1), simply skip to the next
* ASCONF, and include in the outbound response packet
* any previously cached ASCONF-ACK response that was
* sent and saved that matches the Sequence Number of the
* ASCONF. Note: It is possible that no cached ASCONF-ACK
* Chunk exists. This will occur when an older ASCONF
* arrives out of order. In such a case, the receiver
* should skip the ASCONF Chunk and not include ASCONF-ACK
* Chunk for that chunk.
*/
asconf_ack = sctp_assoc_lookup_asconf_ack(asoc, hdr->serial);
if (!asconf_ack)
return SCTP_DISPOSITION_DISCARD;
} else {
/* ADDIP 5.2 E5) Otherwise, the ASCONF Chunk is discarded since
* it must be either a stale packet or from an attacker.
*/
return SCTP_DISPOSITION_DISCARD;
}
/* ADDIP 5.2 E6) The destination address of the SCTP packet
* containing the ASCONF-ACK Chunks MUST be the source address of
* the SCTP packet that held the ASCONF Chunks.
*
* To do this properly, we'll set the destination address of the chunk
* and at the transmit time, will try look up the transport to use.
* Since ASCONFs may be bundled, the correct transport may not be
* created untill we process the entire packet, thus this workaround.
*/
asconf_ack->dest = chunk->source;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(asconf_ack));
return SCTP_DISPOSITION_CONSUME;
}
/*
* ADDIP Section 4.3 General rules for address manipulation
* When building TLV parameters for the ASCONF Chunk that will add or
* delete IP addresses the D0 to D13 rules should be applied:
*/
sctp_disposition_t sctp_sf_do_asconf_ack(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type, void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *asconf_ack = arg;
struct sctp_chunk *last_asconf = asoc->addip_last_asconf;
struct sctp_chunk *abort;
struct sctp_paramhdr *err_param = NULL;
sctp_addiphdr_t *addip_hdr;
__u32 sent_serial, rcvd_serial;
if (!sctp_vtag_verify(asconf_ack, asoc)) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
SCTP_NULL());
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
/* ADD-IP, Section 4.1.2:
* This chunk MUST be sent in an authenticated way by using
* the mechanism defined in [I-D.ietf-tsvwg-sctp-auth]. If this chunk
* is received unauthenticated it MUST be silently discarded as
* described in [I-D.ietf-tsvwg-sctp-auth].
*/
if (!sctp_addip_noauth && !asconf_ack->auth)
return sctp_sf_discard_chunk(ep, asoc, type, arg, commands);
/* Make sure that the ADDIP chunk has a valid length. */
if (!sctp_chunk_length_valid(asconf_ack, sizeof(sctp_addip_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
addip_hdr = (sctp_addiphdr_t *)asconf_ack->skb->data;
rcvd_serial = ntohl(addip_hdr->serial);
/* Verify the ASCONF-ACK chunk before processing it. */
if (!sctp_verify_asconf(asoc,
(sctp_paramhdr_t *)addip_hdr->params,
(void *)asconf_ack->chunk_end,
&err_param))
return sctp_sf_violation_paramlen(ep, asoc, type, arg,
(void *)err_param, commands);
if (last_asconf) {
addip_hdr = (sctp_addiphdr_t *)last_asconf->subh.addip_hdr;
sent_serial = ntohl(addip_hdr->serial);
} else {
sent_serial = asoc->addip_serial - 1;
}
/* D0) If an endpoint receives an ASCONF-ACK that is greater than or
* equal to the next serial number to be used but no ASCONF chunk is
* outstanding the endpoint MUST ABORT the association. Note that a
* sequence number is greater than if it is no more than 2^^31-1
* larger than the current sequence number (using serial arithmetic).
*/
if (ADDIP_SERIAL_gte(rcvd_serial, sent_serial + 1) &&
!(asoc->addip_last_asconf)) {
abort = sctp_make_abort(asoc, asconf_ack,
sizeof(sctp_errhdr_t));
if (abort) {
sctp_init_cause(abort, SCTP_ERROR_ASCONF_ACK, 0);
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(abort));
}
/* We are going to ABORT, so we might as well stop
* processing the rest of the chunks in the packet.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET,SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ECONNABORTED));
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_ASCONF_ACK));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_DISPOSITION_ABORT;
}
if ((rcvd_serial == sent_serial) && asoc->addip_last_asconf) {
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
if (!sctp_process_asconf_ack((struct sctp_association *)asoc,
asconf_ack))
return SCTP_DISPOSITION_CONSUME;
abort = sctp_make_abort(asoc, asconf_ack,
sizeof(sctp_errhdr_t));
if (abort) {
sctp_init_cause(abort, SCTP_ERROR_RSRC_LOW, 0);
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(abort));
}
/* We are going to ABORT, so we might as well stop
* processing the rest of the chunks in the packet.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET,SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ECONNABORTED));
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_ASCONF_ACK));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_DISPOSITION_ABORT;
}
return SCTP_DISPOSITION_DISCARD;
}
/*
* PR-SCTP Section 3.6 Receiver Side Implementation of PR-SCTP
*
* When a FORWARD TSN chunk arrives, the data receiver MUST first update
* its cumulative TSN point to the value carried in the FORWARD TSN
* chunk, and then MUST further advance its cumulative TSN point locally
* if possible.
* After the above processing, the data receiver MUST stop reporting any
* missing TSNs earlier than or equal to the new cumulative TSN point.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_eat_fwd_tsn(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_fwdtsn_hdr *fwdtsn_hdr;
struct sctp_fwdtsn_skip *skip;
__u16 len;
__u32 tsn;
if (!sctp_vtag_verify(chunk, asoc)) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
SCTP_NULL());
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
/* Make sure that the FORWARD_TSN chunk has valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_fwdtsn_chunk)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
fwdtsn_hdr = (struct sctp_fwdtsn_hdr *)chunk->skb->data;
chunk->subh.fwdtsn_hdr = fwdtsn_hdr;
len = ntohs(chunk->chunk_hdr->length);
len -= sizeof(struct sctp_chunkhdr);
skb_pull(chunk->skb, len);
tsn = ntohl(fwdtsn_hdr->new_cum_tsn);
SCTP_DEBUG_PRINTK("%s: TSN 0x%x.\n", __func__, tsn);
/* The TSN is too high--silently discard the chunk and count on it
* getting retransmitted later.
*/
if (sctp_tsnmap_check(&asoc->peer.tsn_map, tsn) < 0)
goto discard_noforce;
/* Silently discard the chunk if stream-id is not valid */
sctp_walk_fwdtsn(skip, chunk) {
if (ntohs(skip->stream) >= asoc->c.sinit_max_instreams)
goto discard_noforce;
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_FWDTSN, SCTP_U32(tsn));
if (len > sizeof(struct sctp_fwdtsn_hdr))
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_FWDTSN,
SCTP_CHUNK(chunk));
/* Count this as receiving DATA. */
if (asoc->autoclose) {
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
}
/* FIXME: For now send a SACK, but DATA processing may
* send another.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_NOFORCE());
return SCTP_DISPOSITION_CONSUME;
discard_noforce:
return SCTP_DISPOSITION_DISCARD;
}
sctp_disposition_t sctp_sf_eat_fwd_tsn_fast(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_fwdtsn_hdr *fwdtsn_hdr;
struct sctp_fwdtsn_skip *skip;
__u16 len;
__u32 tsn;
if (!sctp_vtag_verify(chunk, asoc)) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
SCTP_NULL());
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
/* Make sure that the FORWARD_TSN chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_fwdtsn_chunk)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
fwdtsn_hdr = (struct sctp_fwdtsn_hdr *)chunk->skb->data;
chunk->subh.fwdtsn_hdr = fwdtsn_hdr;
len = ntohs(chunk->chunk_hdr->length);
len -= sizeof(struct sctp_chunkhdr);
skb_pull(chunk->skb, len);
tsn = ntohl(fwdtsn_hdr->new_cum_tsn);
SCTP_DEBUG_PRINTK("%s: TSN 0x%x.\n", __func__, tsn);
/* The TSN is too high--silently discard the chunk and count on it
* getting retransmitted later.
*/
if (sctp_tsnmap_check(&asoc->peer.tsn_map, tsn) < 0)
goto gen_shutdown;
/* Silently discard the chunk if stream-id is not valid */
sctp_walk_fwdtsn(skip, chunk) {
if (ntohs(skip->stream) >= asoc->c.sinit_max_instreams)
goto gen_shutdown;
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_FWDTSN, SCTP_U32(tsn));
if (len > sizeof(struct sctp_fwdtsn_hdr))
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_FWDTSN,
SCTP_CHUNK(chunk));
/* Go a head and force a SACK, since we are shutting down. */
gen_shutdown:
/* Implementor's Guide.
*
* While in SHUTDOWN-SENT state, the SHUTDOWN sender MUST immediately
* respond to each received packet containing one or more DATA chunk(s)
* with a SACK, a SHUTDOWN chunk, and restart the T2-shutdown timer
*/
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SHUTDOWN, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE());
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
return SCTP_DISPOSITION_CONSUME;
}
/*
* SCTP-AUTH Section 6.3 Receving authenticated chukns
*
* The receiver MUST use the HMAC algorithm indicated in the HMAC
* Identifier field. If this algorithm was not specified by the
* receiver in the HMAC-ALGO parameter in the INIT or INIT-ACK chunk
* during association setup, the AUTH chunk and all chunks after it MUST
* be discarded and an ERROR chunk SHOULD be sent with the error cause
* defined in Section 4.1.
*
* If an endpoint with no shared key receives a Shared Key Identifier
* other than 0, it MUST silently discard all authenticated chunks. If
* the endpoint has at least one endpoint pair shared key for the peer,
* it MUST use the key specified by the Shared Key Identifier if a
* key has been configured for that Shared Key Identifier. If no
* endpoint pair shared key has been configured for that Shared Key
* Identifier, all authenticated chunks MUST be silently discarded.
*
* Verification Tag: 8.5 Verification Tag [Normal verification]
*
* The return value is the disposition of the chunk.
*/
static sctp_ierror_t sctp_sf_authenticate(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
struct sctp_chunk *chunk)
{
struct sctp_authhdr *auth_hdr;
struct sctp_hmac *hmac;
unsigned int sig_len;
__u16 key_id;
__u8 *save_digest;
__u8 *digest;
/* Pull in the auth header, so we can do some more verification */
auth_hdr = (struct sctp_authhdr *)chunk->skb->data;
chunk->subh.auth_hdr = auth_hdr;
skb_pull(chunk->skb, sizeof(struct sctp_authhdr));
/* Make sure that we suport the HMAC algorithm from the auth
* chunk.
*/
if (!sctp_auth_asoc_verify_hmac_id(asoc, auth_hdr->hmac_id))
return SCTP_IERROR_AUTH_BAD_HMAC;
/* Make sure that the provided shared key identifier has been
* configured
*/
key_id = ntohs(auth_hdr->shkey_id);
if (key_id != asoc->active_key_id && !sctp_auth_get_shkey(asoc, key_id))
return SCTP_IERROR_AUTH_BAD_KEYID;
/* Make sure that the length of the signature matches what
* we expect.
*/
sig_len = ntohs(chunk->chunk_hdr->length) - sizeof(sctp_auth_chunk_t);
hmac = sctp_auth_get_hmac(ntohs(auth_hdr->hmac_id));
if (sig_len != hmac->hmac_len)
return SCTP_IERROR_PROTO_VIOLATION;
/* Now that we've done validation checks, we can compute and
* verify the hmac. The steps involved are:
* 1. Save the digest from the chunk.
* 2. Zero out the digest in the chunk.
* 3. Compute the new digest
* 4. Compare saved and new digests.
*/
digest = auth_hdr->hmac;
skb_pull(chunk->skb, sig_len);
save_digest = kmemdup(digest, sig_len, GFP_ATOMIC);
if (!save_digest)
goto nomem;
memset(digest, 0, sig_len);
sctp_auth_calculate_hmac(asoc, chunk->skb,
(struct sctp_auth_chunk *)chunk->chunk_hdr,
GFP_ATOMIC);
/* Discard the packet if the digests do not match */
if (memcmp(save_digest, digest, sig_len)) {
kfree(save_digest);
return SCTP_IERROR_BAD_SIG;
}
kfree(save_digest);
chunk->auth = 1;
return SCTP_IERROR_NO_ERROR;
nomem:
return SCTP_IERROR_NOMEM;
}
sctp_disposition_t sctp_sf_eat_auth(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_authhdr *auth_hdr;
struct sctp_chunk *chunk = arg;
struct sctp_chunk *err_chunk;
sctp_ierror_t error;
/* Make sure that the peer has AUTH capable */
if (!asoc->peer.auth_capable)
return sctp_sf_unk_chunk(ep, asoc, type, arg, commands);
if (!sctp_vtag_verify(chunk, asoc)) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
SCTP_NULL());
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
}
/* Make sure that the AUTH chunk has valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_auth_chunk)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
auth_hdr = (struct sctp_authhdr *)chunk->skb->data;
error = sctp_sf_authenticate(ep, asoc, type, chunk);
switch (error) {
case SCTP_IERROR_AUTH_BAD_HMAC:
/* Generate the ERROR chunk and discard the rest
* of the packet
*/
err_chunk = sctp_make_op_error(asoc, chunk,
SCTP_ERROR_UNSUP_HMAC,
&auth_hdr->hmac_id,
sizeof(__u16));
if (err_chunk) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(err_chunk));
}
/* Fall Through */
case SCTP_IERROR_AUTH_BAD_KEYID:
case SCTP_IERROR_BAD_SIG:
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
break;
case SCTP_IERROR_PROTO_VIOLATION:
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
break;
case SCTP_IERROR_NOMEM:
return SCTP_DISPOSITION_NOMEM;
default:
break;
}
if (asoc->active_key_id != ntohs(auth_hdr->shkey_id)) {
struct sctp_ulpevent *ev;
ev = sctp_ulpevent_make_authkey(asoc, ntohs(auth_hdr->shkey_id),
SCTP_AUTH_NEWKEY, GFP_ATOMIC);
if (!ev)
return -ENOMEM;
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(ev));
}
return SCTP_DISPOSITION_CONSUME;
}
/*
* Process an unknown chunk.
*
* Section: 3.2. Also, 2.1 in the implementor's guide.
*
* Chunk Types are encoded such that the highest-order two bits specify
* the action that must be taken if the processing endpoint does not
* recognize the Chunk Type.
*
* 00 - Stop processing this SCTP packet and discard it, do not process
* any further chunks within it.
*
* 01 - Stop processing this SCTP packet and discard it, do not process
* any further chunks within it, and report the unrecognized
* chunk in an 'Unrecognized Chunk Type'.
*
* 10 - Skip this chunk and continue processing.
*
* 11 - Skip this chunk and continue processing, but report in an ERROR
* Chunk using the 'Unrecognized Chunk Type' cause of error.
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_unk_chunk(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *unk_chunk = arg;
struct sctp_chunk *err_chunk;
sctp_chunkhdr_t *hdr;
SCTP_DEBUG_PRINTK("Processing the unknown chunk id %d.\n", type.chunk);
if (!sctp_vtag_verify(unk_chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the chunk has a valid length.
* Since we don't know the chunk type, we use a general
* chunkhdr structure to make a comparison.
*/
if (!sctp_chunk_length_valid(unk_chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
switch (type.chunk & SCTP_CID_ACTION_MASK) {
case SCTP_CID_ACTION_DISCARD:
/* Discard the packet. */
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
break;
case SCTP_CID_ACTION_DISCARD_ERR:
/* Generate an ERROR chunk as response. */
hdr = unk_chunk->chunk_hdr;
err_chunk = sctp_make_op_error(asoc, unk_chunk,
SCTP_ERROR_UNKNOWN_CHUNK, hdr,
WORD_ROUND(ntohs(hdr->length)));
if (err_chunk) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(err_chunk));
}
/* Discard the packet. */
sctp_sf_pdiscard(ep, asoc, type, arg, commands);
return SCTP_DISPOSITION_CONSUME;
break;
case SCTP_CID_ACTION_SKIP:
/* Skip the chunk. */
return SCTP_DISPOSITION_DISCARD;
break;
case SCTP_CID_ACTION_SKIP_ERR:
/* Generate an ERROR chunk as response. */
hdr = unk_chunk->chunk_hdr;
err_chunk = sctp_make_op_error(asoc, unk_chunk,
SCTP_ERROR_UNKNOWN_CHUNK, hdr,
WORD_ROUND(ntohs(hdr->length)));
if (err_chunk) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(err_chunk));
}
/* Skip the chunk. */
return SCTP_DISPOSITION_CONSUME;
break;
default:
break;
}
return SCTP_DISPOSITION_DISCARD;
}
/*
* Discard the chunk.
*
* Section: 0.2, 5.2.3, 5.2.5, 5.2.6, 6.0, 8.4.6, 8.5.1c, 9.2
* [Too numerous to mention...]
* Verification Tag: No verification needed.
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_discard_chunk(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
/* Make sure that the chunk has a valid length.
* Since we don't know the chunk type, we use a general
* chunkhdr structure to make a comparison.
*/
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
SCTP_DEBUG_PRINTK("Chunk %d is discarded\n", type.chunk);
return SCTP_DISPOSITION_DISCARD;
}
/*
* Discard the whole packet.
*
* Section: 8.4 2)
*
* 2) If the OOTB packet contains an ABORT chunk, the receiver MUST
* silently discard the OOTB packet and take no further action.
*
* Verification Tag: No verification necessary
*
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_pdiscard(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
SCTP_INC_STATS(SCTP_MIB_IN_PKT_DISCARDS);
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL());
return SCTP_DISPOSITION_CONSUME;
}
/*
* The other end is violating protocol.
*
* Section: Not specified
* Verification Tag: Not specified
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (asoc, reply_msg, msg_up, timers, counters)
*
* We simply tag the chunk as a violation. The state machine will log
* the violation and continue.
*/
sctp_disposition_t sctp_sf_violation(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
/* Make sure that the chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
return SCTP_DISPOSITION_VIOLATION;
}
/*
* Common function to handle a protocol violation.
*/
static sctp_disposition_t sctp_sf_abort_violation(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
void *arg,
sctp_cmd_seq_t *commands,
const __u8 *payload,
const size_t paylen)
{
struct sctp_packet *packet = NULL;
struct sctp_chunk *chunk = arg;
struct sctp_chunk *abort = NULL;
/* SCTP-AUTH, Section 6.3:
* It should be noted that if the receiver wants to tear
* down an association in an authenticated way only, the
* handling of malformed packets should not result in
* tearing down the association.
*
* This means that if we only want to abort associations
* in an authenticated way (i.e AUTH+ABORT), then we
* can't destroy this association just becuase the packet
* was malformed.
*/
if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc))
goto discard;
/* Make the abort chunk. */
abort = sctp_make_abort_violation(asoc, chunk, payload, paylen);
if (!abort)
goto nomem;
if (asoc) {
/* Treat INIT-ACK as a special case during COOKIE-WAIT. */
if (chunk->chunk_hdr->type == SCTP_CID_INIT_ACK &&
!asoc->peer.i.init_tag) {
sctp_initack_chunk_t *initack;
initack = (sctp_initack_chunk_t *)chunk->chunk_hdr;
if (!sctp_chunk_length_valid(chunk,
sizeof(sctp_initack_chunk_t)))
abort->chunk_hdr->flags |= SCTP_CHUNK_FLAG_T;
else {
unsigned int inittag;
inittag = ntohl(initack->init_hdr.init_tag);
sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_INITTAG,
SCTP_U32(inittag));
}
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
if (asoc->state <= SCTP_STATE_COOKIE_ECHOED) {
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ECONNREFUSED));
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION));
} else {
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ECONNABORTED));
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION));
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
}
} else {
packet = sctp_ootb_pkt_new(asoc, chunk);
if (!packet)
goto nomem_pkt;
if (sctp_test_T_bit(abort))
packet->vtag = ntohl(chunk->sctp_hdr->vtag);
abort->skb->sk = ep->base.sk;
sctp_packet_append_chunk(packet, abort);
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
SCTP_PACKET(packet));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
}
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
discard:
sctp_sf_pdiscard(ep, asoc, SCTP_ST_CHUNK(0), arg, commands);
return SCTP_DISPOSITION_ABORT;
nomem_pkt:
sctp_chunk_free(abort);
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* Handle a protocol violation when the chunk length is invalid.
* "Invalid" length is identified as smaller than the minimal length a
* given chunk can be. For example, a SACK chunk has invalid length
* if its length is set to be smaller than the size of sctp_sack_chunk_t.
*
* We inform the other end by sending an ABORT with a Protocol Violation
* error code.
*
* Section: Not specified
* Verification Tag: Nothing to do
* Inputs
* (endpoint, asoc, chunk)
*
* Outputs
* (reply_msg, msg_up, counters)
*
* Generate an ABORT chunk and terminate the association.
*/
static sctp_disposition_t sctp_sf_violation_chunklen(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
static const char err_str[]="The following chunk had invalid length:";
return sctp_sf_abort_violation(ep, asoc, arg, commands, err_str,
sizeof(err_str));
}
/*
* Handle a protocol violation when the parameter length is invalid.
* "Invalid" length is identified as smaller than the minimal length a
* given parameter can be.
*/
static sctp_disposition_t sctp_sf_violation_paramlen(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg, void *ext,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
struct sctp_paramhdr *param = ext;
struct sctp_chunk *abort = NULL;
if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc))
goto discard;
/* Make the abort chunk. */
abort = sctp_make_violation_paramlen(asoc, chunk, param);
if (!abort)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ECONNABORTED));
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION));
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
discard:
sctp_sf_pdiscard(ep, asoc, SCTP_ST_CHUNK(0), arg, commands);
return SCTP_DISPOSITION_ABORT;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/* Handle a protocol violation when the peer trying to advance the
* cumulative tsn ack to a point beyond the max tsn currently sent.
*
* We inform the other end by sending an ABORT with a Protocol Violation
* error code.
*/
static sctp_disposition_t sctp_sf_violation_ctsn(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
static const char err_str[]="The cumulative tsn ack beyond the max tsn currently sent:";
return sctp_sf_abort_violation(ep, asoc, arg, commands, err_str,
sizeof(err_str));
}
/* Handle protocol violation of an invalid chunk bundling. For example,
* when we have an association and we recieve bundled INIT-ACK, or
* SHUDOWN-COMPLETE, our peer is clearly violationg the "MUST NOT bundle"
* statement from the specs. Additinally, there might be an attacker
* on the path and we may not want to continue this communication.
*/
static sctp_disposition_t sctp_sf_violation_chunk(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
static const char err_str[]="The following chunk violates protocol:";
if (!asoc)
return sctp_sf_violation(ep, asoc, type, arg, commands);
return sctp_sf_abort_violation(ep, asoc, arg, commands, err_str,
sizeof(err_str));
}
/***************************************************************************
* These are the state functions for handling primitive (Section 10) events.
***************************************************************************/
/*
* sctp_sf_do_prm_asoc
*
* Section: 10.1 ULP-to-SCTP
* B) Associate
*
* Format: ASSOCIATE(local SCTP instance name, destination transport addr,
* outbound stream count)
* -> association id [,destination transport addr list] [,outbound stream
* count]
*
* This primitive allows the upper layer to initiate an association to a
* specific peer endpoint.
*
* The peer endpoint shall be specified by one of the transport addresses
* which defines the endpoint (see Section 1.4). If the local SCTP
* instance has not been initialized, the ASSOCIATE is considered an
* error.
* [This is not relevant for the kernel implementation since we do all
* initialization at boot time. It we hadn't initialized we wouldn't
* get anywhere near this code.]
*
* An association id, which is a local handle to the SCTP association,
* will be returned on successful establishment of the association. If
* SCTP is not able to open an SCTP association with the peer endpoint,
* an error is returned.
* [In the kernel implementation, the struct sctp_association needs to
* be created BEFORE causing this primitive to run.]
*
* Other association parameters may be returned, including the
* complete destination transport addresses of the peer as well as the
* outbound stream count of the local endpoint. One of the transport
* address from the returned destination addresses will be selected by
* the local endpoint as default primary path for sending SCTP packets
* to this peer. The returned "destination transport addr list" can
* be used by the ULP to change the default primary path or to force
* sending a packet to a specific transport address. [All of this
* stuff happens when the INIT ACK arrives. This is a NON-BLOCKING
* function.]
*
* Mandatory attributes:
*
* o local SCTP instance name - obtained from the INITIALIZE operation.
* [This is the argument asoc.]
* o destination transport addr - specified as one of the transport
* addresses of the peer endpoint with which the association is to be
* established.
* [This is asoc->peer.active_path.]
* o outbound stream count - the number of outbound streams the ULP
* would like to open towards this peer endpoint.
* [BUG: This is not currently implemented.]
* Optional attributes:
*
* None.
*
* The return value is a disposition.
*/
sctp_disposition_t sctp_sf_do_prm_asoc(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *repl;
struct sctp_association* my_asoc;
/* The comment below says that we enter COOKIE-WAIT AFTER
* sending the INIT, but that doesn't actually work in our
* implementation...
*/
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_COOKIE_WAIT));
/* RFC 2960 5.1 Normal Establishment of an Association
*
* A) "A" first sends an INIT chunk to "Z". In the INIT, "A"
* must provide its Verification Tag (Tag_A) in the Initiate
* Tag field. Tag_A SHOULD be a random number in the range of
* 1 to 4294967295 (see 5.3.1 for Tag value selection). ...
*/
repl = sctp_make_init(asoc, &asoc->base.bind_addr, GFP_ATOMIC, 0);
if (!repl)
goto nomem;
/* Cast away the const modifier, as we want to just
* rerun it through as a sideffect.
*/
my_asoc = (struct sctp_association *)asoc;
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(my_asoc));
/* Choose transport for INIT. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT,
SCTP_CHUNK(repl));
/* After sending the INIT, "A" starts the T1-init timer and
* enters the COOKIE-WAIT state.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* Process the SEND primitive.
*
* Section: 10.1 ULP-to-SCTP
* E) Send
*
* Format: SEND(association id, buffer address, byte count [,context]
* [,stream id] [,life time] [,destination transport address]
* [,unorder flag] [,no-bundle flag] [,payload protocol-id] )
* -> result
*
* This is the main method to send user data via SCTP.
*
* Mandatory attributes:
*
* o association id - local handle to the SCTP association
*
* o buffer address - the location where the user message to be
* transmitted is stored;
*
* o byte count - The size of the user data in number of bytes;
*
* Optional attributes:
*
* o context - an optional 32 bit integer that will be carried in the
* sending failure notification to the ULP if the transportation of
* this User Message fails.
*
* o stream id - to indicate which stream to send the data on. If not
* specified, stream 0 will be used.
*
* o life time - specifies the life time of the user data. The user data
* will not be sent by SCTP after the life time expires. This
* parameter can be used to avoid efforts to transmit stale
* user messages. SCTP notifies the ULP if the data cannot be
* initiated to transport (i.e. sent to the destination via SCTP's
* send primitive) within the life time variable. However, the
* user data will be transmitted if SCTP has attempted to transmit a
* chunk before the life time expired.
*
* o destination transport address - specified as one of the destination
* transport addresses of the peer endpoint to which this packet
* should be sent. Whenever possible, SCTP should use this destination
* transport address for sending the packets, instead of the current
* primary path.
*
* o unorder flag - this flag, if present, indicates that the user
* would like the data delivered in an unordered fashion to the peer
* (i.e., the U flag is set to 1 on all DATA chunks carrying this
* message).
*
* o no-bundle flag - instructs SCTP not to bundle this user data with
* other outbound DATA chunks. SCTP MAY still bundle even when
* this flag is present, when faced with network congestion.
*
* o payload protocol-id - A 32 bit unsigned integer that is to be
* passed to the peer indicating the type of payload protocol data
* being transmitted. This value is passed as opaque data by SCTP.
*
* The return value is the disposition.
*/
sctp_disposition_t sctp_sf_do_prm_send(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(chunk));
return SCTP_DISPOSITION_CONSUME;
}
/*
* Process the SHUTDOWN primitive.
*
* Section: 10.1:
* C) Shutdown
*
* Format: SHUTDOWN(association id)
* -> result
*
* Gracefully closes an association. Any locally queued user data
* will be delivered to the peer. The association will be terminated only
* after the peer acknowledges all the SCTP packets sent. A success code
* will be returned on successful termination of the association. If
* attempting to terminate the association results in a failure, an error
* code shall be returned.
*
* Mandatory attributes:
*
* o association id - local handle to the SCTP association
*
* Optional attributes:
*
* None.
*
* The return value is the disposition.
*/
sctp_disposition_t sctp_sf_do_9_2_prm_shutdown(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
int disposition;
/* From 9.2 Shutdown of an Association
* Upon receipt of the SHUTDOWN primitive from its upper
* layer, the endpoint enters SHUTDOWN-PENDING state and
* remains there until all outstanding data has been
* acknowledged by its peer. The endpoint accepts no new data
* from its upper layer, but retransmits data to the far end
* if necessary to fill gaps.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_SHUTDOWN_PENDING));
disposition = SCTP_DISPOSITION_CONSUME;
if (sctp_outq_is_empty(&asoc->outqueue)) {
disposition = sctp_sf_do_9_2_start_shutdown(ep, asoc, type,
arg, commands);
}
return disposition;
}
/*
* Process the ABORT primitive.
*
* Section: 10.1:
* C) Abort
*
* Format: Abort(association id [, cause code])
* -> result
*
* Ungracefully closes an association. Any locally queued user data
* will be discarded and an ABORT chunk is sent to the peer. A success code
* will be returned on successful abortion of the association. If
* attempting to abort the association results in a failure, an error
* code shall be returned.
*
* Mandatory attributes:
*
* o association id - local handle to the SCTP association
*
* Optional attributes:
*
* o cause code - reason of the abort to be passed to the peer
*
* None.
*
* The return value is the disposition.
*/
sctp_disposition_t sctp_sf_do_9_1_prm_abort(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* From 9.1 Abort of an Association
* Upon receipt of the ABORT primitive from its upper
* layer, the endpoint enters CLOSED state and
* discard all outstanding data has been
* acknowledged by its peer. The endpoint accepts no new data
* from its upper layer, but retransmits data to the far end
* if necessary to fill gaps.
*/
struct sctp_chunk *abort = arg;
sctp_disposition_t retval;
retval = SCTP_DISPOSITION_CONSUME;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
/* Even if we can't send the ABORT due to low memory delete the
* TCB. This is a departure from our typical NOMEM handling.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ECONNABORTED));
/* Delete the established association. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_USER_ABORT));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return retval;
}
/* We tried an illegal operation on an association which is closed. */
sctp_disposition_t sctp_sf_error_closed(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_ERROR, SCTP_ERROR(-EINVAL));
return SCTP_DISPOSITION_CONSUME;
}
/* We tried an illegal operation on an association which is shutting
* down.
*/
sctp_disposition_t sctp_sf_error_shutdown(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_ERROR,
SCTP_ERROR(-ESHUTDOWN));
return SCTP_DISPOSITION_CONSUME;
}
/*
* sctp_cookie_wait_prm_shutdown
*
* Section: 4 Note: 2
* Verification Tag:
* Inputs
* (endpoint, asoc)
*
* The RFC does not explicitly address this issue, but is the route through the
* state table when someone issues a shutdown while in COOKIE_WAIT state.
*
* Outputs
* (timers)
*/
sctp_disposition_t sctp_sf_cookie_wait_prm_shutdown(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
SCTP_INC_STATS(SCTP_MIB_SHUTDOWNS);
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
return SCTP_DISPOSITION_DELETE_TCB;
}
/*
* sctp_cookie_echoed_prm_shutdown
*
* Section: 4 Note: 2
* Verification Tag:
* Inputs
* (endpoint, asoc)
*
* The RFC does not explcitly address this issue, but is the route through the
* state table when someone issues a shutdown while in COOKIE_ECHOED state.
*
* Outputs
* (timers)
*/
sctp_disposition_t sctp_sf_cookie_echoed_prm_shutdown(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg, sctp_cmd_seq_t *commands)
{
/* There is a single T1 timer, so we should be able to use
* common function with the COOKIE-WAIT state.
*/
return sctp_sf_cookie_wait_prm_shutdown(ep, asoc, type, arg, commands);
}
/*
* sctp_sf_cookie_wait_prm_abort
*
* Section: 4 Note: 2
* Verification Tag:
* Inputs
* (endpoint, asoc)
*
* The RFC does not explicitly address this issue, but is the route through the
* state table when someone issues an abort while in COOKIE_WAIT state.
*
* Outputs
* (timers)
*/
sctp_disposition_t sctp_sf_cookie_wait_prm_abort(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *abort = arg;
sctp_disposition_t retval;
/* Stop T1-init timer */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
retval = SCTP_DISPOSITION_CONSUME;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
/* Even if we can't send the ABORT due to low memory delete the
* TCB. This is a departure from our typical NOMEM handling.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ECONNREFUSED));
/* Delete the established association. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_PERR(SCTP_ERROR_USER_ABORT));
return retval;
}
/*
* sctp_sf_cookie_echoed_prm_abort
*
* Section: 4 Note: 3
* Verification Tag:
* Inputs
* (endpoint, asoc)
*
* The RFC does not explcitly address this issue, but is the route through the
* state table when someone issues an abort while in COOKIE_ECHOED state.
*
* Outputs
* (timers)
*/
sctp_disposition_t sctp_sf_cookie_echoed_prm_abort(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* There is a single T1 timer, so we should be able to use
* common function with the COOKIE-WAIT state.
*/
return sctp_sf_cookie_wait_prm_abort(ep, asoc, type, arg, commands);
}
/*
* sctp_sf_shutdown_pending_prm_abort
*
* Inputs
* (endpoint, asoc)
*
* The RFC does not explicitly address this issue, but is the route through the
* state table when someone issues an abort while in SHUTDOWN-PENDING state.
*
* Outputs
* (timers)
*/
sctp_disposition_t sctp_sf_shutdown_pending_prm_abort(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* Stop the T5-shutdown guard timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
return sctp_sf_do_9_1_prm_abort(ep, asoc, type, arg, commands);
}
/*
* sctp_sf_shutdown_sent_prm_abort
*
* Inputs
* (endpoint, asoc)
*
* The RFC does not explicitly address this issue, but is the route through the
* state table when someone issues an abort while in SHUTDOWN-SENT state.
*
* Outputs
* (timers)
*/
sctp_disposition_t sctp_sf_shutdown_sent_prm_abort(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* Stop the T2-shutdown timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
/* Stop the T5-shutdown guard timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
return sctp_sf_do_9_1_prm_abort(ep, asoc, type, arg, commands);
}
/*
* sctp_sf_cookie_echoed_prm_abort
*
* Inputs
* (endpoint, asoc)
*
* The RFC does not explcitly address this issue, but is the route through the
* state table when someone issues an abort while in COOKIE_ECHOED state.
*
* Outputs
* (timers)
*/
sctp_disposition_t sctp_sf_shutdown_ack_sent_prm_abort(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
/* The same T2 timer, so we should be able to use
* common function with the SHUTDOWN-SENT state.
*/
return sctp_sf_shutdown_sent_prm_abort(ep, asoc, type, arg, commands);
}
/*
* Process the REQUESTHEARTBEAT primitive
*
* 10.1 ULP-to-SCTP
* J) Request Heartbeat
*
* Format: REQUESTHEARTBEAT(association id, destination transport address)
*
* -> result
*
* Instructs the local endpoint to perform a HeartBeat on the specified
* destination transport address of the given association. The returned
* result should indicate whether the transmission of the HEARTBEAT
* chunk to the destination address is successful.
*
* Mandatory attributes:
*
* o association id - local handle to the SCTP association
*
* o destination transport address - the transport address of the
* association on which a heartbeat should be issued.
*/
sctp_disposition_t sctp_sf_do_prm_requestheartbeat(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
if (SCTP_DISPOSITION_NOMEM == sctp_sf_heartbeat(ep, asoc, type,
(struct sctp_transport *)arg, commands))
return SCTP_DISPOSITION_NOMEM;
/*
* RFC 2960 (bis), section 8.3
*
* D) Request an on-demand HEARTBEAT on a specific destination
* transport address of a given association.
*
* The endpoint should increment the respective error counter of
* the destination transport address each time a HEARTBEAT is sent
* to that address and not acknowledged within one RTO.
*
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_HB_SENT,
SCTP_TRANSPORT(arg));
return SCTP_DISPOSITION_CONSUME;
}
/*
* ADDIP Section 4.1 ASCONF Chunk Procedures
* When an endpoint has an ASCONF signaled change to be sent to the
* remote endpoint it should do A1 to A9
*/
sctp_disposition_t sctp_sf_do_prm_asconf(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = arg;
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T4, SCTP_CHUNK(chunk));
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(chunk));
return SCTP_DISPOSITION_CONSUME;
}
/*
* Ignore the primitive event
*
* The return value is the disposition of the primitive.
*/
sctp_disposition_t sctp_sf_ignore_primitive(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
SCTP_DEBUG_PRINTK("Primitive type %d is ignored.\n", type.primitive);
return SCTP_DISPOSITION_DISCARD;
}
/***************************************************************************
* These are the state functions for the OTHER events.
***************************************************************************/
/*
* Start the shutdown negotiation.
*
* From Section 9.2:
* Once all its outstanding data has been acknowledged, the endpoint
* shall send a SHUTDOWN chunk to its peer including in the Cumulative
* TSN Ack field the last sequential TSN it has received from the peer.
* It shall then start the T2-shutdown timer and enter the SHUTDOWN-SENT
* state. If the timer expires, the endpoint must re-send the SHUTDOWN
* with the updated last sequential TSN received from its peer.
*
* The return value is the disposition.
*/
sctp_disposition_t sctp_sf_do_9_2_start_shutdown(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *reply;
/* Once all its outstanding data has been acknowledged, the
* endpoint shall send a SHUTDOWN chunk to its peer including
* in the Cumulative TSN Ack field the last sequential TSN it
* has received from the peer.
*/
reply = sctp_make_shutdown(asoc, NULL);
if (!reply)
goto nomem;
/* Set the transport for the SHUTDOWN chunk and the timeout for the
* T2-shutdown timer.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply));
/* It shall then start the T2-shutdown timer */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
/* RFC 4960 Section 9.2
* The sender of the SHUTDOWN MAY also start an overall guard timer
* 'T5-shutdown-guard' to bound the overall time for shutdown sequence.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
if (asoc->autoclose)
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
/* and enter the SHUTDOWN-SENT state. */
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_SHUTDOWN_SENT));
/* sctp-implguide 2.10 Issues with Heartbeating and failover
*
* HEARTBEAT ... is discontinued after sending either SHUTDOWN
* or SHUTDOWN-ACK.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* Generate a SHUTDOWN ACK now that everything is SACK'd.
*
* From Section 9.2:
*
* If it has no more outstanding DATA chunks, the SHUTDOWN receiver
* shall send a SHUTDOWN ACK and start a T2-shutdown timer of its own,
* entering the SHUTDOWN-ACK-SENT state. If the timer expires, the
* endpoint must re-send the SHUTDOWN ACK.
*
* The return value is the disposition.
*/
sctp_disposition_t sctp_sf_do_9_2_shutdown_ack(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = (struct sctp_chunk *) arg;
struct sctp_chunk *reply;
/* There are 2 ways of getting here:
* 1) called in response to a SHUTDOWN chunk
* 2) called when SCTP_EVENT_NO_PENDING_TSN event is issued.
*
* For the case (2), the arg parameter is set to NULL. We need
* to check that we have a chunk before accessing it's fields.
*/
if (chunk) {
if (!sctp_vtag_verify(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
/* Make sure that the SHUTDOWN chunk has a valid length. */
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_shutdown_chunk_t)))
return sctp_sf_violation_chunklen(ep, asoc, type, arg,
commands);
}
/* If it has no more outstanding DATA chunks, the SHUTDOWN receiver
* shall send a SHUTDOWN ACK ...
*/
reply = sctp_make_shutdown_ack(asoc, chunk);
if (!reply)
goto nomem;
/* Set the transport for the SHUTDOWN ACK chunk and the timeout for
* the T2-shutdown timer.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply));
/* and start/restart a T2-shutdown timer of its own, */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
if (asoc->autoclose)
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
/* Enter the SHUTDOWN-ACK-SENT state. */
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_SHUTDOWN_ACK_SENT));
/* sctp-implguide 2.10 Issues with Heartbeating and failover
*
* HEARTBEAT ... is discontinued after sending either SHUTDOWN
* or SHUTDOWN-ACK.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* Ignore the event defined as other
*
* The return value is the disposition of the event.
*/
sctp_disposition_t sctp_sf_ignore_other(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
SCTP_DEBUG_PRINTK("The event other type %d is ignored\n", type.other);
return SCTP_DISPOSITION_DISCARD;
}
/************************************************************
* These are the state functions for handling timeout events.
************************************************************/
/*
* RTX Timeout
*
* Section: 6.3.3 Handle T3-rtx Expiration
*
* Whenever the retransmission timer T3-rtx expires for a destination
* address, do the following:
* [See below]
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_do_6_3_3_rtx(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_transport *transport = arg;
SCTP_INC_STATS(SCTP_MIB_T3_RTX_EXPIREDS);
if (asoc->overall_error_count >= asoc->max_retrans) {
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ETIMEDOUT));
/* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_NO_ERROR));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_DISPOSITION_DELETE_TCB;
}
/* E1) For the destination address for which the timer
* expires, adjust its ssthresh with rules defined in Section
* 7.2.3 and set the cwnd <- MTU.
*/
/* E2) For the destination address for which the timer
* expires, set RTO <- RTO * 2 ("back off the timer"). The
* maximum value discussed in rule C7 above (RTO.max) may be
* used to provide an upper bound to this doubling operation.
*/
/* E3) Determine how many of the earliest (i.e., lowest TSN)
* outstanding DATA chunks for the address for which the
* T3-rtx has expired will fit into a single packet, subject
* to the MTU constraint for the path corresponding to the
* destination transport address to which the retransmission
* is being sent (this may be different from the address for
* which the timer expires [see Section 6.4]). Call this
* value K. Bundle and retransmit those K DATA chunks in a
* single packet to the destination endpoint.
*
* Note: Any DATA chunks that were sent to the address for
* which the T3-rtx timer expired but did not fit in one MTU
* (rule E3 above), should be marked for retransmission and
* sent as soon as cwnd allows (normally when a SACK arrives).
*/
/* Do some failure management (Section 8.2). */
sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE, SCTP_TRANSPORT(transport));
/* NB: Rules E4 and F1 are implicit in R1. */
sctp_add_cmd_sf(commands, SCTP_CMD_RETRAN, SCTP_TRANSPORT(transport));
return SCTP_DISPOSITION_CONSUME;
}
/*
* Generate delayed SACK on timeout
*
* Section: 6.2 Acknowledgement on Reception of DATA Chunks
*
* The guidelines on delayed acknowledgement algorithm specified in
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically, an
* acknowledgement SHOULD be generated for at least every second packet
* (not every second DATA chunk) received, and SHOULD be generated
* within 200 ms of the arrival of any unacknowledged DATA chunk. In
* some situations it may be beneficial for an SCTP transmitter to be
* more conservative than the algorithms detailed in this document
* allow. However, an SCTP transmitter MUST NOT be more aggressive than
* the following algorithms allow.
*/
sctp_disposition_t sctp_sf_do_6_2_sack(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
SCTP_INC_STATS(SCTP_MIB_DELAY_SACK_EXPIREDS);
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE());
return SCTP_DISPOSITION_CONSUME;
}
/*
* sctp_sf_t1_init_timer_expire
*
* Section: 4 Note: 2
* Verification Tag:
* Inputs
* (endpoint, asoc)
*
* RFC 2960 Section 4 Notes
* 2) If the T1-init timer expires, the endpoint MUST retransmit INIT
* and re-start the T1-init timer without changing state. This MUST
* be repeated up to 'Max.Init.Retransmits' times. After that, the
* endpoint MUST abort the initialization process and report the
* error to SCTP user.
*
* Outputs
* (timers, events)
*
*/
sctp_disposition_t sctp_sf_t1_init_timer_expire(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *repl = NULL;
struct sctp_bind_addr *bp;
int attempts = asoc->init_err_counter + 1;
SCTP_DEBUG_PRINTK("Timer T1 expired (INIT).\n");
SCTP_INC_STATS(SCTP_MIB_T1_INIT_EXPIREDS);
if (attempts <= asoc->max_init_attempts) {
bp = (struct sctp_bind_addr *) &asoc->base.bind_addr;
repl = sctp_make_init(asoc, bp, GFP_ATOMIC, 0);
if (!repl)
return SCTP_DISPOSITION_NOMEM;
/* Choose transport for INIT. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT,
SCTP_CHUNK(repl));
/* Issue a sideeffect to do the needed accounting. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
} else {
SCTP_DEBUG_PRINTK("Giving up on INIT, attempts: %d"
" max_init_attempts: %d\n",
attempts, asoc->max_init_attempts);
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ETIMEDOUT));
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_PERR(SCTP_ERROR_NO_ERROR));
return SCTP_DISPOSITION_DELETE_TCB;
}
return SCTP_DISPOSITION_CONSUME;
}
/*
* sctp_sf_t1_cookie_timer_expire
*
* Section: 4 Note: 2
* Verification Tag:
* Inputs
* (endpoint, asoc)
*
* RFC 2960 Section 4 Notes
* 3) If the T1-cookie timer expires, the endpoint MUST retransmit
* COOKIE ECHO and re-start the T1-cookie timer without changing
* state. This MUST be repeated up to 'Max.Init.Retransmits' times.
* After that, the endpoint MUST abort the initialization process and
* report the error to SCTP user.
*
* Outputs
* (timers, events)
*
*/
sctp_disposition_t sctp_sf_t1_cookie_timer_expire(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *repl = NULL;
int attempts = asoc->init_err_counter + 1;
SCTP_DEBUG_PRINTK("Timer T1 expired (COOKIE-ECHO).\n");
SCTP_INC_STATS(SCTP_MIB_T1_COOKIE_EXPIREDS);
if (attempts <= asoc->max_init_attempts) {
repl = sctp_make_cookie_echo(asoc, NULL);
if (!repl)
return SCTP_DISPOSITION_NOMEM;
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT,
SCTP_CHUNK(repl));
/* Issue a sideeffect to do the needed accounting. */
sctp_add_cmd_sf(commands, SCTP_CMD_COOKIEECHO_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
} else {
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ETIMEDOUT));
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_PERR(SCTP_ERROR_NO_ERROR));
return SCTP_DISPOSITION_DELETE_TCB;
}
return SCTP_DISPOSITION_CONSUME;
}
/* RFC2960 9.2 If the timer expires, the endpoint must re-send the SHUTDOWN
* with the updated last sequential TSN received from its peer.
*
* An endpoint should limit the number of retransmissions of the
* SHUTDOWN chunk to the protocol parameter 'Association.Max.Retrans'.
* If this threshold is exceeded the endpoint should destroy the TCB and
* MUST report the peer endpoint unreachable to the upper layer (and
* thus the association enters the CLOSED state). The reception of any
* packet from its peer (i.e. as the peer sends all of its queued DATA
* chunks) should clear the endpoint's retransmission count and restart
* the T2-Shutdown timer, giving its peer ample opportunity to transmit
* all of its queued DATA chunks that have not yet been sent.
*/
sctp_disposition_t sctp_sf_t2_timer_expire(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *reply = NULL;
SCTP_DEBUG_PRINTK("Timer T2 expired.\n");
SCTP_INC_STATS(SCTP_MIB_T2_SHUTDOWN_EXPIREDS);
((struct sctp_association *)asoc)->shutdown_retries++;
if (asoc->overall_error_count >= asoc->max_retrans) {
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ETIMEDOUT));
/* Note: CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_NO_ERROR));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_DISPOSITION_DELETE_TCB;
}
switch (asoc->state) {
case SCTP_STATE_SHUTDOWN_SENT:
reply = sctp_make_shutdown(asoc, NULL);
break;
case SCTP_STATE_SHUTDOWN_ACK_SENT:
reply = sctp_make_shutdown_ack(asoc, NULL);
break;
default:
BUG();
break;
}
if (!reply)
goto nomem;
/* Do some failure management (Section 8.2).
* If we remove the transport an SHUTDOWN was last sent to, don't
* do failure management.
*/
if (asoc->shutdown_last_sent_to)
sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE,
SCTP_TRANSPORT(asoc->shutdown_last_sent_to));
/* Set the transport for the SHUTDOWN/ACK chunk and the timeout for
* the T2-shutdown timer.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply));
/* Restart the T2-shutdown timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
return SCTP_DISPOSITION_CONSUME;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/*
* ADDIP Section 4.1 ASCONF CHunk Procedures
* If the T4 RTO timer expires the endpoint should do B1 to B5
*/
sctp_disposition_t sctp_sf_t4_timer_expire(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *chunk = asoc->addip_last_asconf;
struct sctp_transport *transport = chunk->transport;
SCTP_INC_STATS(SCTP_MIB_T4_RTO_EXPIREDS);
/* ADDIP 4.1 B1) Increment the error counters and perform path failure
* detection on the appropriate destination address as defined in
* RFC2960 [5] section 8.1 and 8.2.
*/
if (transport)
sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE,
SCTP_TRANSPORT(transport));
/* Reconfig T4 timer and transport. */
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T4, SCTP_CHUNK(chunk));
/* ADDIP 4.1 B2) Increment the association error counters and perform
* endpoint failure detection on the association as defined in
* RFC2960 [5] section 8.1 and 8.2.
* association error counter is incremented in SCTP_CMD_STRIKE.
*/
if (asoc->overall_error_count >= asoc->max_retrans) {
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ETIMEDOUT));
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_NO_ERROR));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_DISPOSITION_ABORT;
}
/* ADDIP 4.1 B3) Back-off the destination address RTO value to which
* the ASCONF chunk was sent by doubling the RTO timer value.
* This is done in SCTP_CMD_STRIKE.
*/
/* ADDIP 4.1 B4) Re-transmit the ASCONF Chunk last sent and if possible
* choose an alternate destination address (please refer to RFC2960
* [5] section 6.4.1). An endpoint MUST NOT add new parameters to this
* chunk, it MUST be the same (including its serial number) as the last
* ASCONF sent.
*/
sctp_chunk_hold(asoc->addip_last_asconf);
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(asoc->addip_last_asconf));
/* ADDIP 4.1 B5) Restart the T-4 RTO timer. Note that if a different
* destination is selected, then the RTO used will be that of the new
* destination address.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
return SCTP_DISPOSITION_CONSUME;
}
/* sctpimpguide-05 Section 2.12.2
* The sender of the SHUTDOWN MAY also start an overall guard timer
* 'T5-shutdown-guard' to bound the overall time for shutdown sequence.
* At the expiration of this timer the sender SHOULD abort the association
* by sending an ABORT chunk.
*/
sctp_disposition_t sctp_sf_t5_timer_expire(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
struct sctp_chunk *reply = NULL;
SCTP_DEBUG_PRINTK("Timer T5 expired.\n");
SCTP_INC_STATS(SCTP_MIB_T5_SHUTDOWN_GUARD_EXPIREDS);
reply = sctp_make_abort(asoc, NULL, 0);
if (!reply)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ETIMEDOUT));
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_NO_ERROR));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_DISPOSITION_DELETE_TCB;
nomem:
return SCTP_DISPOSITION_NOMEM;
}
/* Handle expiration of AUTOCLOSE timer. When the autoclose timer expires,
* the association is automatically closed by starting the shutdown process.
* The work that needs to be done is same as when SHUTDOWN is initiated by
* the user. So this routine looks same as sctp_sf_do_9_2_prm_shutdown().
*/
sctp_disposition_t sctp_sf_autoclose_timer_expire(
const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
int disposition;
SCTP_INC_STATS(SCTP_MIB_AUTOCLOSE_EXPIREDS);
/* From 9.2 Shutdown of an Association
* Upon receipt of the SHUTDOWN primitive from its upper
* layer, the endpoint enters SHUTDOWN-PENDING state and
* remains there until all outstanding data has been
* acknowledged by its peer. The endpoint accepts no new data
* from its upper layer, but retransmits data to the far end
* if necessary to fill gaps.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_SHUTDOWN_PENDING));
disposition = SCTP_DISPOSITION_CONSUME;
if (sctp_outq_is_empty(&asoc->outqueue)) {
disposition = sctp_sf_do_9_2_start_shutdown(ep, asoc, type,
arg, commands);
}
return disposition;
}
/*****************************************************************************
* These are sa state functions which could apply to all types of events.
****************************************************************************/
/*
* This table entry is not implemented.
*
* Inputs
* (endpoint, asoc, chunk)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_not_impl(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
return SCTP_DISPOSITION_NOT_IMPL;
}
/*
* This table entry represents a bug.
*
* Inputs
* (endpoint, asoc, chunk)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_bug(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
return SCTP_DISPOSITION_BUG;
}
/*
* This table entry represents the firing of a timer in the wrong state.
* Since timer deletion cannot be guaranteed a timer 'may' end up firing
* when the association is in the wrong state. This event should
* be ignored, so as to prevent any rearming of the timer.
*
* Inputs
* (endpoint, asoc, chunk)
*
* The return value is the disposition of the chunk.
*/
sctp_disposition_t sctp_sf_timer_ignore(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const sctp_subtype_t type,
void *arg,
sctp_cmd_seq_t *commands)
{
SCTP_DEBUG_PRINTK("Timer %d ignored.\n", type.chunk);
return SCTP_DISPOSITION_CONSUME;
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
/* Pull the SACK chunk based on the SACK header. */
static struct sctp_sackhdr *sctp_sm_pull_sack(struct sctp_chunk *chunk)
{
struct sctp_sackhdr *sack;
unsigned int len;
__u16 num_blocks;
__u16 num_dup_tsns;
/* Protect ourselves from reading too far into
* the skb from a bogus sender.
*/
sack = (struct sctp_sackhdr *) chunk->skb->data;
num_blocks = ntohs(sack->num_gap_ack_blocks);
num_dup_tsns = ntohs(sack->num_dup_tsns);
len = sizeof(struct sctp_sackhdr);
len += (num_blocks + num_dup_tsns) * sizeof(__u32);
if (len > chunk->skb->len)
return NULL;
skb_pull(chunk->skb, len);
return sack;
}
/* Create an ABORT packet to be sent as a response, with the specified
* error causes.
*/
static struct sctp_packet *sctp_abort_pkt_new(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
struct sctp_chunk *chunk,
const void *payload,
size_t paylen)
{
struct sctp_packet *packet;
struct sctp_chunk *abort;
packet = sctp_ootb_pkt_new(asoc, chunk);
if (packet) {
/* Make an ABORT.
* The T bit will be set if the asoc is NULL.
*/
abort = sctp_make_abort(asoc, chunk, paylen);
if (!abort) {
sctp_ootb_pkt_free(packet);
return NULL;
}
/* Reflect vtag if T-Bit is set */
if (sctp_test_T_bit(abort))
packet->vtag = ntohl(chunk->sctp_hdr->vtag);
/* Add specified error causes, i.e., payload, to the
* end of the chunk.
*/
sctp_addto_chunk(abort, paylen, payload);
/* Set the skb to the belonging sock for accounting. */
abort->skb->sk = ep->base.sk;
sctp_packet_append_chunk(packet, abort);
}
return packet;
}
/* Allocate a packet for responding in the OOTB conditions. */
static struct sctp_packet *sctp_ootb_pkt_new(const struct sctp_association *asoc,
const struct sctp_chunk *chunk)
{
struct sctp_packet *packet;
struct sctp_transport *transport;
__u16 sport;
__u16 dport;
__u32 vtag;
/* Get the source and destination port from the inbound packet. */
sport = ntohs(chunk->sctp_hdr->dest);
dport = ntohs(chunk->sctp_hdr->source);
/* The V-tag is going to be the same as the inbound packet if no
* association exists, otherwise, use the peer's vtag.
*/
if (asoc) {
/* Special case the INIT-ACK as there is no peer's vtag
* yet.
*/
switch(chunk->chunk_hdr->type) {
case SCTP_CID_INIT_ACK:
{
sctp_initack_chunk_t *initack;
initack = (sctp_initack_chunk_t *)chunk->chunk_hdr;
vtag = ntohl(initack->init_hdr.init_tag);
break;
}
default:
vtag = asoc->peer.i.init_tag;
break;
}
} else {
/* Special case the INIT and stale COOKIE_ECHO as there is no
* vtag yet.
*/
switch(chunk->chunk_hdr->type) {
case SCTP_CID_INIT:
{
sctp_init_chunk_t *init;
init = (sctp_init_chunk_t *)chunk->chunk_hdr;
vtag = ntohl(init->init_hdr.init_tag);
break;
}
default:
vtag = ntohl(chunk->sctp_hdr->vtag);
break;
}
}
/* Make a transport for the bucket, Eliza... */
transport = sctp_transport_new(sctp_source(chunk), GFP_ATOMIC);
if (!transport)
goto nomem;
/* Cache a route for the transport with the chunk's destination as
* the source address.
*/
sctp_transport_route(transport, (union sctp_addr *)&chunk->dest,
sctp_sk(sctp_get_ctl_sock()));
packet = sctp_packet_init(&transport->packet, transport, sport, dport);
packet = sctp_packet_config(packet, vtag, 0);
return packet;
nomem:
return NULL;
}
/* Free the packet allocated earlier for responding in the OOTB condition. */
void sctp_ootb_pkt_free(struct sctp_packet *packet)
{
sctp_transport_free(packet->transport);
}
/* Send a stale cookie error when a invalid COOKIE ECHO chunk is found */
static void sctp_send_stale_cookie_err(const struct sctp_endpoint *ep,
const struct sctp_association *asoc,
const struct sctp_chunk *chunk,
sctp_cmd_seq_t *commands,
struct sctp_chunk *err_chunk)
{
struct sctp_packet *packet;
if (err_chunk) {
packet = sctp_ootb_pkt_new(asoc, chunk);
if (packet) {
struct sctp_signed_cookie *cookie;
/* Override the OOTB vtag from the cookie. */
cookie = chunk->subh.cookie_hdr;
packet->vtag = cookie->c.peer_vtag;
/* Set the skb to the belonging sock for accounting. */
err_chunk->skb->sk = ep->base.sk;
sctp_packet_append_chunk(packet, err_chunk);
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
SCTP_PACKET(packet));
SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
} else
sctp_chunk_free (err_chunk);
}
}
/* Process a data chunk */
static int sctp_eat_data(const struct sctp_association *asoc,
struct sctp_chunk *chunk,
sctp_cmd_seq_t *commands)
{
sctp_datahdr_t *data_hdr;
struct sctp_chunk *err;
size_t datalen;
sctp_verb_t deliver;
int tmp;
__u32 tsn;
struct sctp_tsnmap *map = (struct sctp_tsnmap *)&asoc->peer.tsn_map;
struct sock *sk = asoc->base.sk;
data_hdr = chunk->subh.data_hdr = (sctp_datahdr_t *)chunk->skb->data;
skb_pull(chunk->skb, sizeof(sctp_datahdr_t));
tsn = ntohl(data_hdr->tsn);
SCTP_DEBUG_PRINTK("eat_data: TSN 0x%x.\n", tsn);
/* ASSERT: Now skb->data is really the user data. */
/* Process ECN based congestion.
*
* Since the chunk structure is reused for all chunks within
* a packet, we use ecn_ce_done to track if we've already
* done CE processing for this packet.
*
* We need to do ECN processing even if we plan to discard the
* chunk later.
*/
if (!chunk->ecn_ce_done) {
struct sctp_af *af;
chunk->ecn_ce_done = 1;
af = sctp_get_af_specific(
ipver2af(ip_hdr(chunk->skb)->version));
if (af && af->is_ce(chunk->skb) && asoc->peer.ecn_capable) {
/* Do real work as sideffect. */
sctp_add_cmd_sf(commands, SCTP_CMD_ECN_CE,
SCTP_U32(tsn));
}
}
tmp = sctp_tsnmap_check(&asoc->peer.tsn_map, tsn);
if (tmp < 0) {
/* The TSN is too high--silently discard the chunk and
* count on it getting retransmitted later.
*/
return SCTP_IERROR_HIGH_TSN;
} else if (tmp > 0) {
/* This is a duplicate. Record it. */
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_DUP, SCTP_U32(tsn));
return SCTP_IERROR_DUP_TSN;
}
/* This is a new TSN. */
/* Discard if there is no room in the receive window.
* Actually, allow a little bit of overflow (up to a MTU).
*/
datalen = ntohs(chunk->chunk_hdr->length);
datalen -= sizeof(sctp_data_chunk_t);
deliver = SCTP_CMD_CHUNK_ULP;
/* Think about partial delivery. */
if ((datalen >= asoc->rwnd) && (!asoc->ulpq.pd_mode)) {
/* Even if we don't accept this chunk there is
* memory pressure.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_PART_DELIVER, SCTP_NULL());
}
/* Spill over rwnd a little bit. Note: While allowed, this spill over
* seems a bit troublesome in that frag_point varies based on
* PMTU. In cases, such as loopback, this might be a rather
* large spill over.
*/
if ((!chunk->data_accepted) && (!asoc->rwnd || asoc->rwnd_over ||
(datalen > asoc->rwnd + asoc->frag_point))) {
/* If this is the next TSN, consider reneging to make
* room. Note: Playing nice with a confused sender. A
* malicious sender can still eat up all our buffer
* space and in the future we may want to detect and
* do more drastic reneging.
*/
if (sctp_tsnmap_has_gap(map) &&
(sctp_tsnmap_get_ctsn(map) + 1) == tsn) {
SCTP_DEBUG_PRINTK("Reneging for tsn:%u\n", tsn);
deliver = SCTP_CMD_RENEGE;
} else {
SCTP_DEBUG_PRINTK("Discard tsn: %u len: %Zd, "
"rwnd: %d\n", tsn, datalen,
asoc->rwnd);
return SCTP_IERROR_IGNORE_TSN;
}
}
/*
* Also try to renege to limit our memory usage in the event that
* we are under memory pressure
[NET] CORE: Introducing new memory accounting interface. This patch introduces new memory accounting functions for each network protocol. Most of them are renamed from memory accounting functions for stream protocols. At the same time, some stream memory accounting functions are removed since other functions do same thing. Renaming: sk_stream_free_skb() -> sk_wmem_free_skb() __sk_stream_mem_reclaim() -> __sk_mem_reclaim() sk_stream_mem_reclaim() -> sk_mem_reclaim() sk_stream_mem_schedule -> __sk_mem_schedule() sk_stream_pages() -> sk_mem_pages() sk_stream_rmem_schedule() -> sk_rmem_schedule() sk_stream_wmem_schedule() -> sk_wmem_schedule() sk_charge_skb() -> sk_mem_charge() Removeing sk_stream_rfree(): consolidates into sock_rfree() sk_stream_set_owner_r(): consolidates into skb_set_owner_r() sk_stream_mem_schedule() The following functions are added. sk_has_account(): check if the protocol supports accounting sk_mem_uncharge(): do the opposite of sk_mem_charge() In addition, to achieve consolidation, updating sk_wmem_queued is removed from sk_mem_charge(). Next, to consolidate memory accounting functions, this patch adds memory accounting calls to network core functions. Moreover, present memory accounting call is renamed to new accounting call. Finally we replace present memory accounting calls with new interface in TCP and SCTP. Signed-off-by: Takahiro Yasui <tyasui@redhat.com> Signed-off-by: Hideo Aoki <haoki@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-12-31 15:11:19 +07:00
* If we can't renege, don't worry about it, the sk_rmem_schedule
* in sctp_ulpevent_make_rcvmsg will drop the frame if we grow our
* memory usage too much
*/
if (*sk->sk_prot_creator->memory_pressure) {
if (sctp_tsnmap_has_gap(map) &&
(sctp_tsnmap_get_ctsn(map) + 1) == tsn) {
SCTP_DEBUG_PRINTK("Under Pressure! Reneging for tsn:%u\n", tsn);
deliver = SCTP_CMD_RENEGE;
}
}
/*
* Section 3.3.10.9 No User Data (9)
*
* Cause of error
* ---------------
* No User Data: This error cause is returned to the originator of a
* DATA chunk if a received DATA chunk has no user data.
*/
if (unlikely(0 == datalen)) {
err = sctp_make_abort_no_data(asoc, chunk, tsn);
if (err) {
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(err));
}
/* We are going to ABORT, so we might as well stop
* processing the rest of the chunks in the packet.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET,SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
SCTP_ERROR(ECONNABORTED));
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_PERR(SCTP_ERROR_NO_DATA));
SCTP_INC_STATS(SCTP_MIB_ABORTEDS);
SCTP_DEC_STATS(SCTP_MIB_CURRESTAB);
return SCTP_IERROR_NO_DATA;
}
chunk->data_accepted = 1;
/* Note: Some chunks may get overcounted (if we drop) or overcounted
* if we renege and the chunk arrives again.
*/
if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
SCTP_INC_STATS(SCTP_MIB_INUNORDERCHUNKS);
else
SCTP_INC_STATS(SCTP_MIB_INORDERCHUNKS);
/* RFC 2960 6.5 Stream Identifier and Stream Sequence Number
*
* If an endpoint receive a DATA chunk with an invalid stream
* identifier, it shall acknowledge the reception of the DATA chunk
* following the normal procedure, immediately send an ERROR chunk
* with cause set to "Invalid Stream Identifier" (See Section 3.3.10)
* and discard the DATA chunk.
*/
if (ntohs(data_hdr->stream) >= asoc->c.sinit_max_instreams) {
/* Mark tsn as received even though we drop it */
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_TSN, SCTP_U32(tsn));
err = sctp_make_op_error(asoc, chunk, SCTP_ERROR_INV_STRM,
&data_hdr->stream,
sizeof(data_hdr->stream));
if (err)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(err));
return SCTP_IERROR_BAD_STREAM;
}
/* Send the data up to the user. Note: Schedule the
* SCTP_CMD_CHUNK_ULP cmd before the SCTP_CMD_GEN_SACK, as the SACK
* chunk needs the updated rwnd.
*/
sctp_add_cmd_sf(commands, deliver, SCTP_CHUNK(chunk));
return SCTP_IERROR_NO_ERROR;
}