linux_dsm_epyc7002/fs/ntfs/super.c

3206 lines
100 KiB
C
Raw Normal View History

/*
* super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
*
* Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
* Copyright (c) 2001,2002 Richard Russon
*
* This program/include file is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program/include file is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (in the main directory of the Linux-NTFS
* distribution in the file COPYING); if not, write to the Free Software
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h> /* For bdev_logical_block_size(). */
#include <linux/backing-dev.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/moduleparam.h>
#include <linux/bitmap.h>
#include "sysctl.h"
#include "logfile.h"
#include "quota.h"
#include "usnjrnl.h"
#include "dir.h"
#include "debug.h"
#include "index.h"
#include "inode.h"
#include "aops.h"
#include "layout.h"
#include "malloc.h"
#include "ntfs.h"
/* Number of mounted filesystems which have compression enabled. */
static unsigned long ntfs_nr_compression_users;
/* A global default upcase table and a corresponding reference count. */
static ntfschar *default_upcase = NULL;
static unsigned long ntfs_nr_upcase_users = 0;
/* Error constants/strings used in inode.c::ntfs_show_options(). */
typedef enum {
/* One of these must be present, default is ON_ERRORS_CONTINUE. */
ON_ERRORS_PANIC = 0x01,
ON_ERRORS_REMOUNT_RO = 0x02,
ON_ERRORS_CONTINUE = 0x04,
/* Optional, can be combined with any of the above. */
ON_ERRORS_RECOVER = 0x10,
} ON_ERRORS_ACTIONS;
const option_t on_errors_arr[] = {
{ ON_ERRORS_PANIC, "panic" },
{ ON_ERRORS_REMOUNT_RO, "remount-ro", },
{ ON_ERRORS_CONTINUE, "continue", },
{ ON_ERRORS_RECOVER, "recover" },
{ 0, NULL }
};
/**
* simple_getbool -
*
* Copied from old ntfs driver (which copied from vfat driver).
*/
static int simple_getbool(char *s, bool *setval)
{
if (s) {
if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
*setval = true;
else if (!strcmp(s, "0") || !strcmp(s, "no") ||
!strcmp(s, "false"))
*setval = false;
else
return 0;
} else
*setval = true;
return 1;
}
/**
* parse_options - parse the (re)mount options
* @vol: ntfs volume
* @opt: string containing the (re)mount options
*
* Parse the recognized options in @opt for the ntfs volume described by @vol.
*/
static bool parse_options(ntfs_volume *vol, char *opt)
{
char *p, *v, *ov;
static char *utf8 = "utf8";
int errors = 0, sloppy = 0;
uid_t uid = (uid_t)-1;
gid_t gid = (gid_t)-1;
umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
int mft_zone_multiplier = -1, on_errors = -1;
int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
struct nls_table *nls_map = NULL, *old_nls;
/* I am lazy... (-8 */
#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
if (!strcmp(p, option)) { \
if (!v || !*v) \
variable = default_value; \
else { \
variable = simple_strtoul(ov = v, &v, 0); \
if (*v) \
goto needs_val; \
} \
}
#define NTFS_GETOPT(option, variable) \
if (!strcmp(p, option)) { \
if (!v || !*v) \
goto needs_arg; \
variable = simple_strtoul(ov = v, &v, 0); \
if (*v) \
goto needs_val; \
}
#define NTFS_GETOPT_OCTAL(option, variable) \
if (!strcmp(p, option)) { \
if (!v || !*v) \
goto needs_arg; \
variable = simple_strtoul(ov = v, &v, 8); \
if (*v) \
goto needs_val; \
}
#define NTFS_GETOPT_BOOL(option, variable) \
if (!strcmp(p, option)) { \
bool val; \
if (!simple_getbool(v, &val)) \
goto needs_bool; \
variable = val; \
}
#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
if (!strcmp(p, option)) { \
int _i; \
if (!v || !*v) \
goto needs_arg; \
ov = v; \
if (variable == -1) \
variable = 0; \
for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
if (!strcmp(opt_array[_i].str, v)) { \
variable |= opt_array[_i].val; \
break; \
} \
if (!opt_array[_i].str || !*opt_array[_i].str) \
goto needs_val; \
}
if (!opt || !*opt)
goto no_mount_options;
ntfs_debug("Entering with mount options string: %s", opt);
while ((p = strsep(&opt, ","))) {
if ((v = strchr(p, '=')))
*v++ = 0;
NTFS_GETOPT("uid", uid)
else NTFS_GETOPT("gid", gid)
else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
else NTFS_GETOPT_OCTAL("fmask", fmask)
else NTFS_GETOPT_OCTAL("dmask", dmask)
else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
on_errors_arr)
else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
p);
else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
if (!strcmp(p, "iocharset"))
ntfs_warning(vol->sb, "Option iocharset is "
"deprecated. Please use "
"option nls=<charsetname> in "
"the future.");
if (!v || !*v)
goto needs_arg;
use_utf8:
old_nls = nls_map;
nls_map = load_nls(v);
if (!nls_map) {
if (!old_nls) {
ntfs_error(vol->sb, "NLS character set "
"%s not found.", v);
return false;
}
ntfs_error(vol->sb, "NLS character set %s not "
"found. Using previous one %s.",
v, old_nls->charset);
nls_map = old_nls;
} else /* nls_map */ {
unload_nls(old_nls);
}
} else if (!strcmp(p, "utf8")) {
bool val = false;
ntfs_warning(vol->sb, "Option utf8 is no longer "
"supported, using option nls=utf8. Please "
"use option nls=utf8 in the future and "
"make sure utf8 is compiled either as a "
"module or into the kernel.");
if (!v || !*v)
val = true;
else if (!simple_getbool(v, &val))
goto needs_bool;
if (val) {
v = utf8;
goto use_utf8;
}
} else {
ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
if (errors < INT_MAX)
errors++;
}
#undef NTFS_GETOPT_OPTIONS_ARRAY
#undef NTFS_GETOPT_BOOL
#undef NTFS_GETOPT
#undef NTFS_GETOPT_WITH_DEFAULT
}
no_mount_options:
if (errors && !sloppy)
return false;
if (sloppy)
ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
"unrecognized mount option(s) and continuing.");
/* Keep this first! */
if (on_errors != -1) {
if (!on_errors) {
ntfs_error(vol->sb, "Invalid errors option argument "
"or bug in options parser.");
return false;
}
}
if (nls_map) {
if (vol->nls_map && vol->nls_map != nls_map) {
ntfs_error(vol->sb, "Cannot change NLS character set "
"on remount.");
return false;
} /* else (!vol->nls_map) */
ntfs_debug("Using NLS character set %s.", nls_map->charset);
vol->nls_map = nls_map;
} else /* (!nls_map) */ {
if (!vol->nls_map) {
vol->nls_map = load_nls_default();
if (!vol->nls_map) {
ntfs_error(vol->sb, "Failed to load default "
"NLS character set.");
return false;
}
ntfs_debug("Using default NLS character set (%s).",
vol->nls_map->charset);
}
}
if (mft_zone_multiplier != -1) {
if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
mft_zone_multiplier) {
ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
"on remount.");
return false;
}
if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
"Using default value, i.e. 1.");
mft_zone_multiplier = 1;
}
vol->mft_zone_multiplier = mft_zone_multiplier;
}
if (!vol->mft_zone_multiplier)
vol->mft_zone_multiplier = 1;
if (on_errors != -1)
vol->on_errors = on_errors;
if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
vol->on_errors |= ON_ERRORS_CONTINUE;
if (uid != (uid_t)-1)
vol->uid = uid;
if (gid != (gid_t)-1)
vol->gid = gid;
if (fmask != (umode_t)-1)
vol->fmask = fmask;
if (dmask != (umode_t)-1)
vol->dmask = dmask;
if (show_sys_files != -1) {
if (show_sys_files)
NVolSetShowSystemFiles(vol);
else
NVolClearShowSystemFiles(vol);
}
if (case_sensitive != -1) {
if (case_sensitive)
NVolSetCaseSensitive(vol);
else
NVolClearCaseSensitive(vol);
}
if (disable_sparse != -1) {
if (disable_sparse)
NVolClearSparseEnabled(vol);
else {
if (!NVolSparseEnabled(vol) &&
vol->major_ver && vol->major_ver < 3)
ntfs_warning(vol->sb, "Not enabling sparse "
"support due to NTFS volume "
"version %i.%i (need at least "
"version 3.0).", vol->major_ver,
vol->minor_ver);
else
NVolSetSparseEnabled(vol);
}
}
return true;
needs_arg:
ntfs_error(vol->sb, "The %s option requires an argument.", p);
return false;
needs_bool:
ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
return false;
needs_val:
ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
return false;
}
#ifdef NTFS_RW
/**
* ntfs_write_volume_flags - write new flags to the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: new flags value for the volume information flags
*
* Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
* instead (see below).
*
* Replace the volume information flags on the volume @vol with the value
* supplied in @flags. Note, this overwrites the volume information flags, so
* make sure to combine the flags you want to modify with the old flags and use
* the result when calling ntfs_write_volume_flags().
*
* Return 0 on success and -errno on error.
*/
static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
{
ntfs_inode *ni = NTFS_I(vol->vol_ino);
MFT_RECORD *m;
VOLUME_INFORMATION *vi;
ntfs_attr_search_ctx *ctx;
int err;
ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
if (vol->vol_flags == flags)
goto done;
BUG_ON(!ni);
m = map_mft_record(ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(ni, m);
if (!ctx) {
err = -ENOMEM;
goto put_unm_err_out;
}
err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
ctx);
if (err)
goto put_unm_err_out;
vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
le16_to_cpu(ctx->attr->data.resident.value_offset));
vol->vol_flags = vi->flags = flags;
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
done:
ntfs_debug("Done.");
return 0;
put_unm_err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
err_out:
ntfs_error(vol->sb, "Failed with error code %i.", -err);
return err;
}
/**
* ntfs_set_volume_flags - set bits in the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: flags to set on the volume
*
* Set the bits in @flags in the volume information flags on the volume @vol.
*
* Return 0 on success and -errno on error.
*/
static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
{
flags &= VOLUME_FLAGS_MASK;
return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
}
/**
* ntfs_clear_volume_flags - clear bits in the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: flags to clear on the volume
*
* Clear the bits in @flags in the volume information flags on the volume @vol.
*
* Return 0 on success and -errno on error.
*/
static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
{
flags &= VOLUME_FLAGS_MASK;
flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
return ntfs_write_volume_flags(vol, flags);
}
#endif /* NTFS_RW */
/**
* ntfs_remount - change the mount options of a mounted ntfs filesystem
* @sb: superblock of mounted ntfs filesystem
* @flags: remount flags
* @opt: remount options string
*
* Change the mount options of an already mounted ntfs filesystem.
*
* NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
* ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
* @sb->s_flags are not changed.
*/
static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
{
ntfs_volume *vol = NTFS_SB(sb);
ntfs_debug("Entering with remount options string: %s", opt);
#ifndef NTFS_RW
/* For read-only compiled driver, enforce read-only flag. */
*flags |= MS_RDONLY;
#else /* NTFS_RW */
/*
* For the read-write compiled driver, if we are remounting read-write,
* make sure there are no volume errors and that no unsupported volume
* flags are set. Also, empty the logfile journal as it would become
* stale as soon as something is written to the volume and mark the
* volume dirty so that chkdsk is run if the volume is not umounted
* cleanly. Finally, mark the quotas out of date so Windows rescans
* the volume on boot and updates them.
*
* When remounting read-only, mark the volume clean if no volume errors
* have occurred.
*/
if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
static const char *es = ". Cannot remount read-write.";
/* Remounting read-write. */
if (NVolErrors(vol)) {
ntfs_error(sb, "Volume has errors and is read-only%s",
es);
return -EROFS;
}
if (vol->vol_flags & VOLUME_IS_DIRTY) {
ntfs_error(sb, "Volume is dirty and read-only%s", es);
return -EROFS;
}
if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
ntfs_error(sb, "Volume has been modified by chkdsk "
"and is read-only%s", es);
return -EROFS;
}
if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
ntfs_error(sb, "Volume has unsupported flags set "
"(0x%x) and is read-only%s",
(unsigned)le16_to_cpu(vol->vol_flags),
es);
return -EROFS;
}
if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
ntfs_error(sb, "Failed to set dirty bit in volume "
"information flags%s", es);
return -EROFS;
}
#if 0
// TODO: Enable this code once we start modifying anything that
// is different between NTFS 1.2 and 3.x...
/* Set NT4 compatibility flag on newer NTFS version volumes. */
if ((vol->major_ver > 1)) {
if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
ntfs_error(sb, "Failed to set NT4 "
"compatibility flag%s", es);
NVolSetErrors(vol);
return -EROFS;
}
}
#endif
if (!ntfs_empty_logfile(vol->logfile_ino)) {
ntfs_error(sb, "Failed to empty journal $LogFile%s",
es);
NVolSetErrors(vol);
return -EROFS;
}
if (!ntfs_mark_quotas_out_of_date(vol)) {
ntfs_error(sb, "Failed to mark quotas out of date%s",
es);
NVolSetErrors(vol);
return -EROFS;
}
if (!ntfs_stamp_usnjrnl(vol)) {
ntfs_error(sb, "Failed to stamp transation log "
"($UsnJrnl)%s", es);
NVolSetErrors(vol);
return -EROFS;
}
} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
/* Remounting read-only. */
if (!NVolErrors(vol)) {
if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
ntfs_warning(sb, "Failed to clear dirty bit "
"in volume information "
"flags. Run chkdsk.");
}
}
#endif /* NTFS_RW */
// TODO: Deal with *flags.
if (!parse_options(vol, opt))
return -EINVAL;
ntfs_debug("Done.");
return 0;
}
/**
* is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
* @sb: Super block of the device to which @b belongs.
* @b: Boot sector of device @sb to check.
* @silent: If 'true', all output will be silenced.
*
* is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
* sector. Returns 'true' if it is valid and 'false' if not.
*
* @sb is only needed for warning/error output, i.e. it can be NULL when silent
* is 'true'.
*/
static bool is_boot_sector_ntfs(const struct super_block *sb,
const NTFS_BOOT_SECTOR *b, const bool silent)
{
/*
* Check that checksum == sum of u32 values from b to the checksum
* field. If checksum is zero, no checking is done. We will work when
* the checksum test fails, since some utilities update the boot sector
* ignoring the checksum which leaves the checksum out-of-date. We
* report a warning if this is the case.
*/
if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
le32 *u;
u32 i;
for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
i += le32_to_cpup(u);
if (le32_to_cpu(b->checksum) != i)
ntfs_warning(sb, "Invalid boot sector checksum.");
}
/* Check OEMidentifier is "NTFS " */
if (b->oem_id != magicNTFS)
goto not_ntfs;
/* Check bytes per sector value is between 256 and 4096. */
if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
goto not_ntfs;
/* Check sectors per cluster value is valid. */
switch (b->bpb.sectors_per_cluster) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
break;
default:
goto not_ntfs;
}
/* Check the cluster size is not above the maximum (64kiB). */
if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
goto not_ntfs;
/* Check reserved/unused fields are really zero. */
if (le16_to_cpu(b->bpb.reserved_sectors) ||
le16_to_cpu(b->bpb.root_entries) ||
le16_to_cpu(b->bpb.sectors) ||
le16_to_cpu(b->bpb.sectors_per_fat) ||
le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
goto not_ntfs;
/* Check clusters per file mft record value is valid. */
if ((u8)b->clusters_per_mft_record < 0xe1 ||
(u8)b->clusters_per_mft_record > 0xf7)
switch (b->clusters_per_mft_record) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64:
break;
default:
goto not_ntfs;
}
/* Check clusters per index block value is valid. */
if ((u8)b->clusters_per_index_record < 0xe1 ||
(u8)b->clusters_per_index_record > 0xf7)
switch (b->clusters_per_index_record) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64:
break;
default:
goto not_ntfs;
}
/*
* Check for valid end of sector marker. We will work without it, but
* many BIOSes will refuse to boot from a bootsector if the magic is
* incorrect, so we emit a warning.
*/
if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
ntfs_warning(sb, "Invalid end of sector marker.");
return true;
not_ntfs:
return false;
}
/**
* read_ntfs_boot_sector - read the NTFS boot sector of a device
* @sb: super block of device to read the boot sector from
* @silent: if true, suppress all output
*
* Reads the boot sector from the device and validates it. If that fails, tries
* to read the backup boot sector, first from the end of the device a-la NT4 and
* later and then from the middle of the device a-la NT3.51 and before.
*
* If a valid boot sector is found but it is not the primary boot sector, we
* repair the primary boot sector silently (unless the device is read-only or
* the primary boot sector is not accessible).
*
* NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
* block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
* to their respective values.
*
* Return the unlocked buffer head containing the boot sector or NULL on error.
*/
static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
const int silent)
{
const char *read_err_str = "Unable to read %s boot sector.";
struct buffer_head *bh_primary, *bh_backup;
sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
/* Try to read primary boot sector. */
if ((bh_primary = sb_bread(sb, 0))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_primary->b_data, silent))
return bh_primary;
if (!silent)
ntfs_error(sb, "Primary boot sector is invalid.");
} else if (!silent)
ntfs_error(sb, read_err_str, "primary");
if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
if (bh_primary)
brelse(bh_primary);
if (!silent)
ntfs_error(sb, "Mount option errors=recover not used. "
"Aborting without trying to recover.");
return NULL;
}
/* Try to read NT4+ backup boot sector. */
if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_backup->b_data, silent))
goto hotfix_primary_boot_sector;
brelse(bh_backup);
} else if (!silent)
ntfs_error(sb, read_err_str, "backup");
/* Try to read NT3.51- backup boot sector. */
if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_backup->b_data, silent))
goto hotfix_primary_boot_sector;
if (!silent)
ntfs_error(sb, "Could not find a valid backup boot "
"sector.");
brelse(bh_backup);
} else if (!silent)
ntfs_error(sb, read_err_str, "backup");
/* We failed. Cleanup and return. */
if (bh_primary)
brelse(bh_primary);
return NULL;
hotfix_primary_boot_sector:
if (bh_primary) {
/*
* If we managed to read sector zero and the volume is not
* read-only, copy the found, valid backup boot sector to the
* primary boot sector. Note we only copy the actual boot
* sector structure, not the actual whole device sector as that
* may be bigger and would potentially damage the $Boot system
* file (FIXME: Would be nice to know if the backup boot sector
* on a large sector device contains the whole boot loader or
* just the first 512 bytes).
*/
if (!(sb->s_flags & MS_RDONLY)) {
ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
"boot sector from backup copy.");
memcpy(bh_primary->b_data, bh_backup->b_data,
NTFS_BLOCK_SIZE);
mark_buffer_dirty(bh_primary);
sync_dirty_buffer(bh_primary);
if (buffer_uptodate(bh_primary)) {
brelse(bh_backup);
return bh_primary;
}
ntfs_error(sb, "Hot-fix: Device write error while "
"recovering primary boot sector.");
} else {
ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
"sector failed: Read-only mount.");
}
brelse(bh_primary);
}
ntfs_warning(sb, "Using backup boot sector.");
return bh_backup;
}
/**
* parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
* @vol: volume structure to initialise with data from boot sector
* @b: boot sector to parse
*
* Parse the ntfs boot sector @b and store all imporant information therein in
* the ntfs super block @vol. Return 'true' on success and 'false' on error.
*/
static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
{
unsigned int sectors_per_cluster_bits, nr_hidden_sects;
int clusters_per_mft_record, clusters_per_index_record;
s64 ll;
vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
vol->sector_size_bits = ffs(vol->sector_size) - 1;
ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
vol->sector_size);
ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
vol->sector_size_bits);
if (vol->sector_size < vol->sb->s_blocksize) {
ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
"device block size (%lu). This is not "
"supported. Sorry.", vol->sector_size,
vol->sb->s_blocksize);
return false;
}
ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
ntfs_debug("sectors_per_cluster_bits = 0x%x",
sectors_per_cluster_bits);
nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
vol->cluster_size_mask = vol->cluster_size - 1;
vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
vol->cluster_size);
ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
if (vol->cluster_size < vol->sector_size) {
ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
"sector size (%i). This is not supported. "
"Sorry.", vol->cluster_size, vol->sector_size);
return false;
}
clusters_per_mft_record = b->clusters_per_mft_record;
ntfs_debug("clusters_per_mft_record = %i (0x%x)",
clusters_per_mft_record, clusters_per_mft_record);
if (clusters_per_mft_record > 0)
vol->mft_record_size = vol->cluster_size <<
(ffs(clusters_per_mft_record) - 1);
else
/*
* When mft_record_size < cluster_size, clusters_per_mft_record
* = -log2(mft_record_size) bytes. mft_record_size normaly is
* 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
*/
vol->mft_record_size = 1 << -clusters_per_mft_record;
vol->mft_record_size_mask = vol->mft_record_size - 1;
vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
vol->mft_record_size);
ntfs_debug("vol->mft_record_size_mask = 0x%x",
vol->mft_record_size_mask);
ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
vol->mft_record_size_bits, vol->mft_record_size_bits);
/*
* We cannot support mft record sizes above the PAGE_CACHE_SIZE since
* we store $MFT/$DATA, the table of mft records in the page cache.
*/
if (vol->mft_record_size > PAGE_CACHE_SIZE) {
ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
"PAGE_CACHE_SIZE on your system (%lu). "
"This is not supported. Sorry.",
vol->mft_record_size, PAGE_CACHE_SIZE);
return false;
}
/* We cannot support mft record sizes below the sector size. */
if (vol->mft_record_size < vol->sector_size) {
ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
"sector size (%i). This is not supported. "
"Sorry.", vol->mft_record_size,
vol->sector_size);
return false;
}
clusters_per_index_record = b->clusters_per_index_record;
ntfs_debug("clusters_per_index_record = %i (0x%x)",
clusters_per_index_record, clusters_per_index_record);
if (clusters_per_index_record > 0)
vol->index_record_size = vol->cluster_size <<
(ffs(clusters_per_index_record) - 1);
else
/*
* When index_record_size < cluster_size,
* clusters_per_index_record = -log2(index_record_size) bytes.
* index_record_size normaly equals 4096 bytes, which is
* encoded as 0xF4 (-12 in decimal).
*/
vol->index_record_size = 1 << -clusters_per_index_record;
vol->index_record_size_mask = vol->index_record_size - 1;
vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
ntfs_debug("vol->index_record_size = %i (0x%x)",
vol->index_record_size, vol->index_record_size);
ntfs_debug("vol->index_record_size_mask = 0x%x",
vol->index_record_size_mask);
ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
vol->index_record_size_bits,
vol->index_record_size_bits);
/* We cannot support index record sizes below the sector size. */
if (vol->index_record_size < vol->sector_size) {
ntfs_error(vol->sb, "Index record size (%i) is smaller than "
"the sector size (%i). This is not "
"supported. Sorry.", vol->index_record_size,
vol->sector_size);
return false;
}
/*
* Get the size of the volume in clusters and check for 64-bit-ness.
* Windows currently only uses 32 bits to save the clusters so we do
* the same as it is much faster on 32-bit CPUs.
*/
ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
if ((u64)ll >= 1ULL << 32) {
ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
return false;
}
vol->nr_clusters = ll;
ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
/*
* On an architecture where unsigned long is 32-bits, we restrict the
* volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
* will hopefully optimize the whole check away.
*/
if (sizeof(unsigned long) < 8) {
if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
"large for this architecture. "
"Maximum supported is 2TiB. Sorry.",
(unsigned long long)ll >> (40 -
vol->cluster_size_bits));
return false;
}
}
ll = sle64_to_cpu(b->mft_lcn);
if (ll >= vol->nr_clusters) {
ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
"volume. Weird.", (unsigned long long)ll,
(unsigned long long)ll);
return false;
}
vol->mft_lcn = ll;
ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
ll = sle64_to_cpu(b->mftmirr_lcn);
if (ll >= vol->nr_clusters) {
ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
"of volume. Weird.", (unsigned long long)ll,
(unsigned long long)ll);
return false;
}
vol->mftmirr_lcn = ll;
ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
#ifdef NTFS_RW
/*
* Work out the size of the mft mirror in number of mft records. If the
* cluster size is less than or equal to the size taken by four mft
* records, the mft mirror stores the first four mft records. If the
* cluster size is bigger than the size taken by four mft records, the
* mft mirror contains as many mft records as will fit into one
* cluster.
*/
if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
vol->mftmirr_size = 4;
else
vol->mftmirr_size = vol->cluster_size >>
vol->mft_record_size_bits;
ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
#endif /* NTFS_RW */
vol->serial_no = le64_to_cpu(b->volume_serial_number);
ntfs_debug("vol->serial_no = 0x%llx",
(unsigned long long)vol->serial_no);
return true;
}
/**
* ntfs_setup_allocators - initialize the cluster and mft allocators
* @vol: volume structure for which to setup the allocators
*
* Setup the cluster (lcn) and mft allocators to the starting values.
*/
static void ntfs_setup_allocators(ntfs_volume *vol)
{
#ifdef NTFS_RW
LCN mft_zone_size, mft_lcn;
#endif /* NTFS_RW */
ntfs_debug("vol->mft_zone_multiplier = 0x%x",
vol->mft_zone_multiplier);
#ifdef NTFS_RW
/* Determine the size of the MFT zone. */
mft_zone_size = vol->nr_clusters;
switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
case 4:
mft_zone_size >>= 1; /* 50% */
break;
case 3:
mft_zone_size = (mft_zone_size +
(mft_zone_size >> 1)) >> 2; /* 37.5% */
break;
case 2:
mft_zone_size >>= 2; /* 25% */
break;
/* case 1: */
default:
mft_zone_size >>= 3; /* 12.5% */
break;
}
/* Setup the mft zone. */
vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
ntfs_debug("vol->mft_zone_pos = 0x%llx",
(unsigned long long)vol->mft_zone_pos);
/*
* Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
* source) and if the actual mft_lcn is in the expected place or even
* further to the front of the volume, extend the mft_zone to cover the
* beginning of the volume as well. This is in order to protect the
* area reserved for the mft bitmap as well within the mft_zone itself.
* On non-standard volumes we do not protect it as the overhead would
* be higher than the speed increase we would get by doing it.
*/
mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
if (mft_lcn * vol->cluster_size < 16 * 1024)
mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
vol->cluster_size;
if (vol->mft_zone_start <= mft_lcn)
vol->mft_zone_start = 0;
ntfs_debug("vol->mft_zone_start = 0x%llx",
(unsigned long long)vol->mft_zone_start);
/*
* Need to cap the mft zone on non-standard volumes so that it does
* not point outside the boundaries of the volume. We do this by
* halving the zone size until we are inside the volume.
*/
vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
while (vol->mft_zone_end >= vol->nr_clusters) {
mft_zone_size >>= 1;
vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
}
ntfs_debug("vol->mft_zone_end = 0x%llx",
(unsigned long long)vol->mft_zone_end);
/*
* Set the current position within each data zone to the start of the
* respective zone.
*/
vol->data1_zone_pos = vol->mft_zone_end;
ntfs_debug("vol->data1_zone_pos = 0x%llx",
(unsigned long long)vol->data1_zone_pos);
vol->data2_zone_pos = 0;
ntfs_debug("vol->data2_zone_pos = 0x%llx",
(unsigned long long)vol->data2_zone_pos);
/* Set the mft data allocation position to mft record 24. */
vol->mft_data_pos = 24;
ntfs_debug("vol->mft_data_pos = 0x%llx",
(unsigned long long)vol->mft_data_pos);
#endif /* NTFS_RW */
}
#ifdef NTFS_RW
/**
* load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
* @vol: ntfs super block describing device whose mft mirror to load
*
* Return 'true' on success or 'false' on error.
*/
static bool load_and_init_mft_mirror(ntfs_volume *vol)
{
struct inode *tmp_ino;
ntfs_inode *tmp_ni;
ntfs_debug("Entering.");
/* Get mft mirror inode. */
tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
/* Caller will display error message. */
return false;
}
/*
* Re-initialize some specifics about $MFTMirr's inode as
* ntfs_read_inode() will have set up the default ones.
*/
/* Set uid and gid to root. */
tmp_ino->i_uid = tmp_ino->i_gid = 0;
/* Regular file. No access for anyone. */
tmp_ino->i_mode = S_IFREG;
/* No VFS initiated operations allowed for $MFTMirr. */
tmp_ino->i_op = &ntfs_empty_inode_ops;
tmp_ino->i_fop = &ntfs_empty_file_ops;
/* Put in our special address space operations. */
tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
tmp_ni = NTFS_I(tmp_ino);
/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
NInoSetMstProtected(tmp_ni);
NInoSetSparseDisabled(tmp_ni);
/*
* Set up our little cheat allowing us to reuse the async read io
* completion handler for directories.
*/
tmp_ni->itype.index.block_size = vol->mft_record_size;
tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
vol->mftmirr_ino = tmp_ino;
ntfs_debug("Done.");
return true;
}
/**
* check_mft_mirror - compare contents of the mft mirror with the mft
* @vol: ntfs super block describing device whose mft mirror to check
*
* Return 'true' on success or 'false' on error.
*
* Note, this function also results in the mft mirror runlist being completely
* mapped into memory. The mft mirror write code requires this and will BUG()
* should it find an unmapped runlist element.
*/
static bool check_mft_mirror(ntfs_volume *vol)
{
struct super_block *sb = vol->sb;
ntfs_inode *mirr_ni;
struct page *mft_page, *mirr_page;
u8 *kmft, *kmirr;
runlist_element *rl, rl2[2];
pgoff_t index;
int mrecs_per_page, i;
ntfs_debug("Entering.");
/* Compare contents of $MFT and $MFTMirr. */
mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
BUG_ON(!mrecs_per_page);
BUG_ON(!vol->mftmirr_size);
mft_page = mirr_page = NULL;
kmft = kmirr = NULL;
index = i = 0;
do {
u32 bytes;
/* Switch pages if necessary. */
if (!(i % mrecs_per_page)) {
if (index) {
ntfs_unmap_page(mft_page);
ntfs_unmap_page(mirr_page);
}
/* Get the $MFT page. */
mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
index);
if (IS_ERR(mft_page)) {
ntfs_error(sb, "Failed to read $MFT.");
return false;
}
kmft = page_address(mft_page);
/* Get the $MFTMirr page. */
mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
index);
if (IS_ERR(mirr_page)) {
ntfs_error(sb, "Failed to read $MFTMirr.");
goto mft_unmap_out;
}
kmirr = page_address(mirr_page);
++index;
}
/* Do not check the record if it is not in use. */
if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
/* Make sure the record is ok. */
if (ntfs_is_baad_recordp((le32*)kmft)) {
ntfs_error(sb, "Incomplete multi sector "
"transfer detected in mft "
"record %i.", i);
mm_unmap_out:
ntfs_unmap_page(mirr_page);
mft_unmap_out:
ntfs_unmap_page(mft_page);
return false;
}
}
/* Do not check the mirror record if it is not in use. */
if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
if (ntfs_is_baad_recordp((le32*)kmirr)) {
ntfs_error(sb, "Incomplete multi sector "
"transfer detected in mft "
"mirror record %i.", i);
goto mm_unmap_out;
}
}
/* Get the amount of data in the current record. */
bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
if (bytes < sizeof(MFT_RECORD_OLD) ||
bytes > vol->mft_record_size ||
ntfs_is_baad_recordp((le32*)kmft)) {
bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
if (bytes < sizeof(MFT_RECORD_OLD) ||
bytes > vol->mft_record_size ||
ntfs_is_baad_recordp((le32*)kmirr))
bytes = vol->mft_record_size;
}
/* Compare the two records. */
if (memcmp(kmft, kmirr, bytes)) {
ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
"match. Run ntfsfix or chkdsk.", i);
goto mm_unmap_out;
}
kmft += vol->mft_record_size;
kmirr += vol->mft_record_size;
} while (++i < vol->mftmirr_size);
/* Release the last pages. */
ntfs_unmap_page(mft_page);
ntfs_unmap_page(mirr_page);
/* Construct the mft mirror runlist by hand. */
rl2[0].vcn = 0;
rl2[0].lcn = vol->mftmirr_lcn;
rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
vol->cluster_size - 1) / vol->cluster_size;
rl2[1].vcn = rl2[0].length;
rl2[1].lcn = LCN_ENOENT;
rl2[1].length = 0;
/*
* Because we have just read all of the mft mirror, we know we have
* mapped the full runlist for it.
*/
mirr_ni = NTFS_I(vol->mftmirr_ino);
down_read(&mirr_ni->runlist.lock);
rl = mirr_ni->runlist.rl;
/* Compare the two runlists. They must be identical. */
i = 0;
do {
if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
rl2[i].length != rl[i].length) {
ntfs_error(sb, "$MFTMirr location mismatch. "
"Run chkdsk.");
up_read(&mirr_ni->runlist.lock);
return false;
}
} while (rl2[i++].length);
up_read(&mirr_ni->runlist.lock);
ntfs_debug("Done.");
return true;
}
/**
* load_and_check_logfile - load and check the logfile inode for a volume
* @vol: ntfs super block describing device whose logfile to load
*
* Return 'true' on success or 'false' on error.
*/
static bool load_and_check_logfile(ntfs_volume *vol,
RESTART_PAGE_HEADER **rp)
{
struct inode *tmp_ino;
ntfs_debug("Entering.");
tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
/* Caller will display error message. */
return false;
}
if (!ntfs_check_logfile(tmp_ino, rp)) {
iput(tmp_ino);
/* ntfs_check_logfile() will have displayed error output. */
return false;
}
NInoSetSparseDisabled(NTFS_I(tmp_ino));
vol->logfile_ino = tmp_ino;
ntfs_debug("Done.");
return true;
}
#define NTFS_HIBERFIL_HEADER_SIZE 4096
/**
* check_windows_hibernation_status - check if Windows is suspended on a volume
* @vol: ntfs super block of device to check
*
* Check if Windows is hibernated on the ntfs volume @vol. This is done by
* looking for the file hiberfil.sys in the root directory of the volume. If
* the file is not present Windows is definitely not suspended.
*
* If hiberfil.sys exists and is less than 4kiB in size it means Windows is
* definitely suspended (this volume is not the system volume). Caveat: on a
* system with many volumes it is possible that the < 4kiB check is bogus but
* for now this should do fine.
*
* If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
* hiberfil header (which is the first 4kiB). If this begins with "hibr",
* Windows is definitely suspended. If it is completely full of zeroes,
* Windows is definitely not hibernated. Any other case is treated as if
* Windows is suspended. This caters for the above mentioned caveat of a
* system with many volumes where no "hibr" magic would be present and there is
* no zero header.
*
* Return 0 if Windows is not hibernated on the volume, >0 if Windows is
* hibernated on the volume, and -errno on error.
*/
static int check_windows_hibernation_status(ntfs_volume *vol)
{
MFT_REF mref;
struct inode *vi;
struct page *page;
u32 *kaddr, *kend;
ntfs_name *name = NULL;
int ret = 1;
static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
cpu_to_le16('i'), cpu_to_le16('b'),
cpu_to_le16('e'), cpu_to_le16('r'),
cpu_to_le16('f'), cpu_to_le16('i'),
cpu_to_le16('l'), cpu_to_le16('.'),
cpu_to_le16('s'), cpu_to_le16('y'),
cpu_to_le16('s'), 0 };
ntfs_debug("Entering.");
/*
* Find the inode number for the hibernation file by looking up the
* filename hiberfil.sys in the root directory.
*/
mutex_lock(&vol->root_ino->i_mutex);
mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
&name);
mutex_unlock(&vol->root_ino->i_mutex);
if (IS_ERR_MREF(mref)) {
ret = MREF_ERR(mref);
/* If the file does not exist, Windows is not hibernated. */
if (ret == -ENOENT) {
ntfs_debug("hiberfil.sys not present. Windows is not "
"hibernated on the volume.");
return 0;
}
/* A real error occurred. */
ntfs_error(vol->sb, "Failed to find inode number for "
"hiberfil.sys.");
return ret;
}
/* We do not care for the type of match that was found. */
kfree(name);
/* Get the inode. */
vi = ntfs_iget(vol->sb, MREF(mref));
if (IS_ERR(vi) || is_bad_inode(vi)) {
if (!IS_ERR(vi))
iput(vi);
ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
}
if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
"Windows is hibernated on the volume. This "
"is not the system volume.", i_size_read(vi));
goto iput_out;
}
page = ntfs_map_page(vi->i_mapping, 0);
if (IS_ERR(page)) {
ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
ret = PTR_ERR(page);
goto iput_out;
}
kaddr = (u32*)page_address(page);
if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
"hibernated on the volume. This is the "
"system volume.");
goto unm_iput_out;
}
kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
do {
if (unlikely(*kaddr)) {
ntfs_debug("hiberfil.sys is larger than 4kiB "
"(0x%llx), does not contain the "
"\"hibr\" magic, and does not have a "
"zero header. Windows is hibernated "
"on the volume. This is not the "
"system volume.", i_size_read(vi));
goto unm_iput_out;
}
} while (++kaddr < kend);
ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
"hibernated on the volume. This is the system "
"volume.");
ret = 0;
unm_iput_out:
ntfs_unmap_page(page);
iput_out:
iput(vi);
return ret;
}
/**
* load_and_init_quota - load and setup the quota file for a volume if present
* @vol: ntfs super block describing device whose quota file to load
*
* Return 'true' on success or 'false' on error. If $Quota is not present, we
* leave vol->quota_ino as NULL and return success.
*/
static bool load_and_init_quota(ntfs_volume *vol)
{
MFT_REF mref;
struct inode *tmp_ino;
ntfs_name *name = NULL;
static const ntfschar Quota[7] = { cpu_to_le16('$'),
cpu_to_le16('Q'), cpu_to_le16('u'),
cpu_to_le16('o'), cpu_to_le16('t'),
cpu_to_le16('a'), 0 };
static ntfschar Q[3] = { cpu_to_le16('$'),
cpu_to_le16('Q'), 0 };
ntfs_debug("Entering.");
/*
* Find the inode number for the quota file by looking up the filename
* $Quota in the extended system files directory $Extend.
*/
mutex_lock(&vol->extend_ino->i_mutex);
mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
&name);
mutex_unlock(&vol->extend_ino->i_mutex);
if (IS_ERR_MREF(mref)) {
/*
* If the file does not exist, quotas are disabled and have
* never been enabled on this volume, just return success.
*/
if (MREF_ERR(mref) == -ENOENT) {
ntfs_debug("$Quota not present. Volume does not have "
"quotas enabled.");
/*
* No need to try to set quotas out of date if they are
* not enabled.
*/
NVolSetQuotaOutOfDate(vol);
return true;
}
/* A real error occurred. */
ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
return false;
}
/* We do not care for the type of match that was found. */
kfree(name);
/* Get the inode. */
tmp_ino = ntfs_iget(vol->sb, MREF(mref));
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
ntfs_error(vol->sb, "Failed to load $Quota.");
return false;
}
vol->quota_ino = tmp_ino;
/* Get the $Q index allocation attribute. */
tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
if (IS_ERR(tmp_ino)) {
ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
return false;
}
vol->quota_q_ino = tmp_ino;
ntfs_debug("Done.");
return true;
}
/**
* load_and_init_usnjrnl - load and setup the transaction log if present
* @vol: ntfs super block describing device whose usnjrnl file to load
*
* Return 'true' on success or 'false' on error.
*
* If $UsnJrnl is not present or in the process of being disabled, we set
* NVolUsnJrnlStamped() and return success.
*
* If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
* i.e. transaction logging has only just been enabled or the journal has been
* stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
* and return success.
*/
static bool load_and_init_usnjrnl(ntfs_volume *vol)
{
MFT_REF mref;
struct inode *tmp_ino;
ntfs_inode *tmp_ni;
struct page *page;
ntfs_name *name = NULL;
USN_HEADER *uh;
static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
cpu_to_le16('U'), cpu_to_le16('s'),
cpu_to_le16('n'), cpu_to_le16('J'),
cpu_to_le16('r'), cpu_to_le16('n'),
cpu_to_le16('l'), 0 };
static ntfschar Max[5] = { cpu_to_le16('$'),
cpu_to_le16('M'), cpu_to_le16('a'),
cpu_to_le16('x'), 0 };
static ntfschar J[3] = { cpu_to_le16('$'),
cpu_to_le16('J'), 0 };
ntfs_debug("Entering.");
/*
* Find the inode number for the transaction log file by looking up the
* filename $UsnJrnl in the extended system files directory $Extend.
*/
mutex_lock(&vol->extend_ino->i_mutex);
mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
&name);
mutex_unlock(&vol->extend_ino->i_mutex);
if (IS_ERR_MREF(mref)) {
/*
* If the file does not exist, transaction logging is disabled,
* just return success.
*/
if (MREF_ERR(mref) == -ENOENT) {
ntfs_debug("$UsnJrnl not present. Volume does not "
"have transaction logging enabled.");
not_enabled:
/*
* No need to try to stamp the transaction log if
* transaction logging is not enabled.
*/
NVolSetUsnJrnlStamped(vol);
return true;
}
/* A real error occurred. */
ntfs_error(vol->sb, "Failed to find inode number for "
"$UsnJrnl.");
return false;
}
/* We do not care for the type of match that was found. */
kfree(name);
/* Get the inode. */
tmp_ino = ntfs_iget(vol->sb, MREF(mref));
if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
return false;
}
vol->usnjrnl_ino = tmp_ino;
/*
* If the transaction log is in the process of being deleted, we can
* ignore it.
*/
if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
ntfs_debug("$UsnJrnl in the process of being disabled. "
"Volume does not have transaction logging "
"enabled.");
goto not_enabled;
}
/* Get the $DATA/$Max attribute. */
tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
if (IS_ERR(tmp_ino)) {
ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
"attribute.");
return false;
}
vol->usnjrnl_max_ino = tmp_ino;
if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
"attribute (size is 0x%llx but should be at "
"least 0x%zx bytes).", i_size_read(tmp_ino),
sizeof(USN_HEADER));
return false;
}
/* Get the $DATA/$J attribute. */
tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
if (IS_ERR(tmp_ino)) {
ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
"attribute.");
return false;
}
vol->usnjrnl_j_ino = tmp_ino;
/* Verify $J is non-resident and sparse. */
tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
"and/or not sparse.");
return false;
}
/* Read the USN_HEADER from $DATA/$Max. */
page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
if (IS_ERR(page)) {
ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
"attribute.");
return false;
}
uh = (USN_HEADER*)page_address(page);
/* Sanity check the $Max. */
if (unlikely(sle64_to_cpu(uh->allocation_delta) >
sle64_to_cpu(uh->maximum_size))) {
ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
"maximum size (0x%llx). $UsnJrnl is corrupt.",
(long long)sle64_to_cpu(uh->allocation_delta),
(long long)sle64_to_cpu(uh->maximum_size));
ntfs_unmap_page(page);
return false;
}
/*
* If the transaction log has been stamped and nothing has been written
* to it since, we do not need to stamp it.
*/
if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
i_size_read(vol->usnjrnl_j_ino))) {
if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
i_size_read(vol->usnjrnl_j_ino))) {
ntfs_unmap_page(page);
ntfs_debug("$UsnJrnl is enabled but nothing has been "
"logged since it was last stamped. "
"Treating this as if the volume does "
"not have transaction logging "
"enabled.");
goto not_enabled;
}
ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
"which is out of bounds (0x%llx). $UsnJrnl "
"is corrupt.",
(long long)sle64_to_cpu(uh->lowest_valid_usn),
i_size_read(vol->usnjrnl_j_ino));
ntfs_unmap_page(page);
return false;
}
ntfs_unmap_page(page);
ntfs_debug("Done.");
return true;
}
/**
* load_and_init_attrdef - load the attribute definitions table for a volume
* @vol: ntfs super block describing device whose attrdef to load
*
* Return 'true' on success or 'false' on error.
*/
static bool load_and_init_attrdef(ntfs_volume *vol)
{
loff_t i_size;
struct super_block *sb = vol->sb;
struct inode *ino;
struct page *page;
pgoff_t index, max_index;
unsigned int size;
ntfs_debug("Entering.");
/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
ino = ntfs_iget(sb, FILE_AttrDef);
if (IS_ERR(ino) || is_bad_inode(ino)) {
if (!IS_ERR(ino))
iput(ino);
goto failed;
}
NInoSetSparseDisabled(NTFS_I(ino));
/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
i_size = i_size_read(ino);
if (i_size <= 0 || i_size > 0x7fffffff)
goto iput_failed;
vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
if (!vol->attrdef)
goto iput_failed;
index = 0;
max_index = i_size >> PAGE_CACHE_SHIFT;
size = PAGE_CACHE_SIZE;
while (index < max_index) {
/* Read the attrdef table and copy it into the linear buffer. */
read_partial_attrdef_page:
page = ntfs_map_page(ino->i_mapping, index);
if (IS_ERR(page))
goto free_iput_failed;
memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
page_address(page), size);
ntfs_unmap_page(page);
};
if (size == PAGE_CACHE_SIZE) {
size = i_size & ~PAGE_CACHE_MASK;
if (size)
goto read_partial_attrdef_page;
}
vol->attrdef_size = i_size;
ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
iput(ino);
return true;
free_iput_failed:
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
iput_failed:
iput(ino);
failed:
ntfs_error(sb, "Failed to initialize attribute definition table.");
return false;
}
#endif /* NTFS_RW */
/**
* load_and_init_upcase - load the upcase table for an ntfs volume
* @vol: ntfs super block describing device whose upcase to load
*
* Return 'true' on success or 'false' on error.
*/
static bool load_and_init_upcase(ntfs_volume *vol)
{
loff_t i_size;
struct super_block *sb = vol->sb;
struct inode *ino;
struct page *page;
pgoff_t index, max_index;
unsigned int size;
int i, max;
ntfs_debug("Entering.");
/* Read upcase table and setup vol->upcase and vol->upcase_len. */
ino = ntfs_iget(sb, FILE_UpCase);
if (IS_ERR(ino) || is_bad_inode(ino)) {
if (!IS_ERR(ino))
iput(ino);
goto upcase_failed;
}
/*
* The upcase size must not be above 64k Unicode characters, must not
* be zero and must be a multiple of sizeof(ntfschar).
*/
i_size = i_size_read(ino);
if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
i_size > 64ULL * 1024 * sizeof(ntfschar))
goto iput_upcase_failed;
vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
if (!vol->upcase)
goto iput_upcase_failed;
index = 0;
max_index = i_size >> PAGE_CACHE_SHIFT;
size = PAGE_CACHE_SIZE;
while (index < max_index) {
/* Read the upcase table and copy it into the linear buffer. */
read_partial_upcase_page:
page = ntfs_map_page(ino->i_mapping, index);
if (IS_ERR(page))
goto iput_upcase_failed;
memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
page_address(page), size);
ntfs_unmap_page(page);
};
if (size == PAGE_CACHE_SIZE) {
size = i_size & ~PAGE_CACHE_MASK;
if (size)
goto read_partial_upcase_page;
}
vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
i_size, 64 * 1024 * sizeof(ntfschar));
iput(ino);
mutex_lock(&ntfs_lock);
if (!default_upcase) {
ntfs_debug("Using volume specified $UpCase since default is "
"not present.");
mutex_unlock(&ntfs_lock);
return true;
}
max = default_upcase_len;
if (max > vol->upcase_len)
max = vol->upcase_len;
for (i = 0; i < max; i++)
if (vol->upcase[i] != default_upcase[i])
break;
if (i == max) {
ntfs_free(vol->upcase);
vol->upcase = default_upcase;
vol->upcase_len = max;
ntfs_nr_upcase_users++;
mutex_unlock(&ntfs_lock);
ntfs_debug("Volume specified $UpCase matches default. Using "
"default.");
return true;
}
mutex_unlock(&ntfs_lock);
ntfs_debug("Using volume specified $UpCase since it does not match "
"the default.");
return true;
iput_upcase_failed:
iput(ino);
ntfs_free(vol->upcase);
vol->upcase = NULL;
upcase_failed:
mutex_lock(&ntfs_lock);
if (default_upcase) {
vol->upcase = default_upcase;
vol->upcase_len = default_upcase_len;
ntfs_nr_upcase_users++;
mutex_unlock(&ntfs_lock);
ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
"default.");
return true;
}
mutex_unlock(&ntfs_lock);
ntfs_error(sb, "Failed to initialize upcase table.");
return false;
}
/*
* The lcn and mft bitmap inodes are NTFS-internal inodes with
* their own special locking rules:
*/
static struct lock_class_key
lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
/**
* load_system_files - open the system files using normal functions
* @vol: ntfs super block describing device whose system files to load
*
* Open the system files with normal access functions and complete setting up
* the ntfs super block @vol.
*
* Return 'true' on success or 'false' on error.
*/
static bool load_system_files(ntfs_volume *vol)
{
struct super_block *sb = vol->sb;
MFT_RECORD *m;
VOLUME_INFORMATION *vi;
ntfs_attr_search_ctx *ctx;
#ifdef NTFS_RW
RESTART_PAGE_HEADER *rp;
int err;
#endif /* NTFS_RW */
ntfs_debug("Entering.");
#ifdef NTFS_RW
/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
static const char *es1 = "Failed to load $MFTMirr";
static const char *es2 = "$MFTMirr does not match $MFT";
static const char *es3 = ". Run ntfsfix and/or chkdsk.";
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
!vol->mftmirr_ino ? es1 : es2,
es3);
goto iput_mirr_err_out;
}
sb->s_flags |= MS_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s",
!vol->mftmirr_ino ? es1 : es2, es3);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s",
!vol->mftmirr_ino ? es1 : es2, es3);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
#endif /* NTFS_RW */
/* Get mft bitmap attribute inode. */
vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
if (IS_ERR(vol->mftbmp_ino)) {
ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
goto iput_mirr_err_out;
}
lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
&mftbmp_runlist_lock_key);
lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
&mftbmp_mrec_lock_key);
/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
if (!load_and_init_upcase(vol))
goto iput_mftbmp_err_out;
#ifdef NTFS_RW
/*
* Read attribute definitions table and setup @vol->attrdef and
* @vol->attrdef_size.
*/
if (!load_and_init_attrdef(vol))
goto iput_upcase_err_out;
#endif /* NTFS_RW */
/*
* Get the cluster allocation bitmap inode and verify the size, no
* need for any locking at this stage as we are already running
* exclusively as we are mount in progress task.
*/
vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
if (!IS_ERR(vol->lcnbmp_ino))
iput(vol->lcnbmp_ino);
goto bitmap_failed;
}
lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
&lcnbmp_runlist_lock_key);
lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
&lcnbmp_mrec_lock_key);
NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
iput(vol->lcnbmp_ino);
bitmap_failed:
ntfs_error(sb, "Failed to load $Bitmap.");
goto iput_attrdef_err_out;
}
/*
* Get the volume inode and setup our cache of the volume flags and
* version.
*/
vol->vol_ino = ntfs_iget(sb, FILE_Volume);
if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
if (!IS_ERR(vol->vol_ino))
iput(vol->vol_ino);
volume_failed:
ntfs_error(sb, "Failed to load $Volume.");
goto iput_lcnbmp_err_out;
}
m = map_mft_record(NTFS_I(vol->vol_ino));
if (IS_ERR(m)) {
iput_volume_failed:
iput(vol->vol_ino);
goto volume_failed;
}
if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
ntfs_error(sb, "Failed to get attribute search context.");
goto get_ctx_vol_failed;
}
if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
ctx) || ctx->attr->non_resident || ctx->attr->flags) {
err_put_vol:
ntfs_attr_put_search_ctx(ctx);
get_ctx_vol_failed:
unmap_mft_record(NTFS_I(vol->vol_ino));
goto iput_volume_failed;
}
vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
le16_to_cpu(ctx->attr->data.resident.value_offset));
/* Some bounds checks. */
if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
le32_to_cpu(ctx->attr->data.resident.value_length) >
(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
goto err_put_vol;
/* Copy the volume flags and version to the ntfs_volume structure. */
vol->vol_flags = vi->flags;
vol->major_ver = vi->major_ver;
vol->minor_ver = vi->minor_ver;
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(NTFS_I(vol->vol_ino));
printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
vol->minor_ver);
if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
"volume version %i.%i (need at least version "
"3.0).", vol->major_ver, vol->minor_ver);
NVolClearSparseEnabled(vol);
}
#ifdef NTFS_RW
/* Make sure that no unsupported volume flags are set. */
if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
static const char *es1a = "Volume is dirty";
static const char *es1b = "Volume has been modified by chkdsk";
static const char *es1c = "Volume has unsupported flags set";
static const char *es2a = ". Run chkdsk and mount in Windows.";
static const char *es2b = ". Mount in Windows.";
const char *es1, *es2;
es2 = es2a;
if (vol->vol_flags & VOLUME_IS_DIRTY)
es1 = es1a;
else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
es1 = es1b;
es2 = es2b;
} else {
es1 = es1c;
ntfs_warning(sb, "Unsupported volume flags 0x%x "
"encountered.",
(unsigned)le16_to_cpu(vol->vol_flags));
}
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_vol_err_out;
}
sb->s_flags |= MS_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/*
* Do not set NVolErrors() because ntfs_remount() re-checks the
* flags which we need to do in case any flags have changed.
*/
}
/*
* Get the inode for the logfile, check it and determine if the volume
* was shutdown cleanly.
*/
rp = NULL;
if (!load_and_check_logfile(vol, &rp) ||
!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
static const char *es1a = "Failed to load $LogFile";
static const char *es1b = "$LogFile is not clean";
static const char *es2 = ". Mount in Windows.";
const char *es1;
es1 = !vol->logfile_ino ? es1a : es1b;
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
if (vol->logfile_ino) {
BUG_ON(!rp);
ntfs_free(rp);
}
goto iput_logfile_err_out;
}
sb->s_flags |= MS_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
ntfs_free(rp);
#endif /* NTFS_RW */
/* Get the root directory inode so we can do path lookups. */
vol->root_ino = ntfs_iget(sb, FILE_root);
if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
if (!IS_ERR(vol->root_ino))
iput(vol->root_ino);
ntfs_error(sb, "Failed to load root directory.");
goto iput_logfile_err_out;
}
#ifdef NTFS_RW
/*
* Check if Windows is suspended to disk on the target volume. If it
* is hibernated, we must not write *anything* to the disk so set
* NVolErrors() without setting the dirty volume flag and mount
* read-only. This will prevent read-write remounting and it will also
* prevent all writes.
*/
err = check_windows_hibernation_status(vol);
if (unlikely(err)) {
static const char *es1a = "Failed to determine if Windows is "
"hibernated";
static const char *es1b = "Windows is hibernated";
static const char *es2 = ". Run chkdsk.";
const char *es1;
es1 = err < 0 ? es1a : es1b;
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_root_err_out;
}
sb->s_flags |= MS_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
/* If (still) a read-write mount, mark the volume dirty. */
if (!(sb->s_flags & MS_RDONLY) &&
ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
static const char *es1 = "Failed to set dirty bit in volume "
"information flags";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_root_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY;
/*
* Do not set NVolErrors() because ntfs_remount() might manage
* to set the dirty flag in which case all would be well.
*/
}
#if 0
// TODO: Enable this code once we start modifying anything that is
// different between NTFS 1.2 and 3.x...
/*
* If (still) a read-write mount, set the NT4 compatibility flag on
* newer NTFS version volumes.
*/
if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
static const char *es1 = "Failed to set NT4 compatibility flag";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_root_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY;
NVolSetErrors(vol);
}
#endif
/* If (still) a read-write mount, empty the logfile. */
if (!(sb->s_flags & MS_RDONLY) &&
!ntfs_empty_logfile(vol->logfile_ino)) {
static const char *es1 = "Failed to empty $LogFile";
static const char *es2 = ". Mount in Windows.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_root_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY;
NVolSetErrors(vol);
}
#endif /* NTFS_RW */
/* If on NTFS versions before 3.0, we are done. */
if (unlikely(vol->major_ver < 3))
return true;
/* NTFS 3.0+ specific initialization. */
/* Get the security descriptors inode. */
vol->secure_ino = ntfs_iget(sb, FILE_Secure);
if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
if (!IS_ERR(vol->secure_ino))
iput(vol->secure_ino);
ntfs_error(sb, "Failed to load $Secure.");
goto iput_root_err_out;
}
// TODO: Initialize security.
/* Get the extended system files' directory inode. */
vol->extend_ino = ntfs_iget(sb, FILE_Extend);
if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
if (!IS_ERR(vol->extend_ino))
iput(vol->extend_ino);
ntfs_error(sb, "Failed to load $Extend.");
goto iput_sec_err_out;
}
#ifdef NTFS_RW
/* Find the quota file, load it if present, and set it up. */
if (!load_and_init_quota(vol)) {
static const char *es1 = "Failed to load $Quota";
static const char *es2 = ". Run chkdsk.";
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_quota_err_out;
}
sb->s_flags |= MS_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
/* If (still) a read-write mount, mark the quotas out of date. */
if (!(sb->s_flags & MS_RDONLY) &&
!ntfs_mark_quotas_out_of_date(vol)) {
static const char *es1 = "Failed to mark quotas out of date";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_quota_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY;
NVolSetErrors(vol);
}
/*
* Find the transaction log file ($UsnJrnl), load it if present, check
* it, and set it up.
*/
if (!load_and_init_usnjrnl(vol)) {
static const char *es1 = "Failed to load $UsnJrnl";
static const char *es2 = ". Run chkdsk.";
/* If a read-write mount, convert it to a read-only mount. */
if (!(sb->s_flags & MS_RDONLY)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_usnjrnl_err_out;
}
sb->s_flags |= MS_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
/* If (still) a read-write mount, stamp the transaction log. */
if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
static const char *es1 = "Failed to stamp transaction log "
"($UsnJrnl)";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_usnjrnl_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= MS_RDONLY;
NVolSetErrors(vol);
}
#endif /* NTFS_RW */
return true;
#ifdef NTFS_RW
iput_usnjrnl_err_out:
if (vol->usnjrnl_j_ino)
iput(vol->usnjrnl_j_ino);
if (vol->usnjrnl_max_ino)
iput(vol->usnjrnl_max_ino);
if (vol->usnjrnl_ino)
iput(vol->usnjrnl_ino);
iput_quota_err_out:
if (vol->quota_q_ino)
iput(vol->quota_q_ino);
if (vol->quota_ino)
iput(vol->quota_ino);
iput(vol->extend_ino);
#endif /* NTFS_RW */
iput_sec_err_out:
iput(vol->secure_ino);
iput_root_err_out:
iput(vol->root_ino);
iput_logfile_err_out:
#ifdef NTFS_RW
if (vol->logfile_ino)
iput(vol->logfile_ino);
iput_vol_err_out:
#endif /* NTFS_RW */
iput(vol->vol_ino);
iput_lcnbmp_err_out:
iput(vol->lcnbmp_ino);
iput_attrdef_err_out:
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
#ifdef NTFS_RW
iput_upcase_err_out:
#endif /* NTFS_RW */
vol->upcase_len = 0;
mutex_lock(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
mutex_unlock(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
iput_mftbmp_err_out:
iput(vol->mftbmp_ino);
iput_mirr_err_out:
#ifdef NTFS_RW
if (vol->mftmirr_ino)
iput(vol->mftmirr_ino);
#endif /* NTFS_RW */
return false;
}
/**
* ntfs_put_super - called by the vfs to unmount a volume
* @sb: vfs superblock of volume to unmount
*
* ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
* the volume is being unmounted (umount system call has been invoked) and it
* releases all inodes and memory belonging to the NTFS specific part of the
* super block.
*/
static void ntfs_put_super(struct super_block *sb)
{
ntfs_volume *vol = NTFS_SB(sb);
ntfs_debug("Entering.");
#ifdef NTFS_RW
/*
* Commit all inodes while they are still open in case some of them
* cause others to be dirtied.
*/
ntfs_commit_inode(vol->vol_ino);
/* NTFS 3.0+ specific. */
if (vol->major_ver >= 3) {
if (vol->usnjrnl_j_ino)
ntfs_commit_inode(vol->usnjrnl_j_ino);
if (vol->usnjrnl_max_ino)
ntfs_commit_inode(vol->usnjrnl_max_ino);
if (vol->usnjrnl_ino)
ntfs_commit_inode(vol->usnjrnl_ino);
if (vol->quota_q_ino)
ntfs_commit_inode(vol->quota_q_ino);
if (vol->quota_ino)
ntfs_commit_inode(vol->quota_ino);
if (vol->extend_ino)
ntfs_commit_inode(vol->extend_ino);
if (vol->secure_ino)
ntfs_commit_inode(vol->secure_ino);
}
ntfs_commit_inode(vol->root_ino);
down_write(&vol->lcnbmp_lock);
ntfs_commit_inode(vol->lcnbmp_ino);
up_write(&vol->lcnbmp_lock);
down_write(&vol->mftbmp_lock);
ntfs_commit_inode(vol->mftbmp_ino);
up_write(&vol->mftbmp_lock);
if (vol->logfile_ino)
ntfs_commit_inode(vol->logfile_ino);
if (vol->mftmirr_ino)
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
/*
* If a read-write mount and no volume errors have occurred, mark the
* volume clean. Also, re-commit all affected inodes.
*/
if (!(sb->s_flags & MS_RDONLY)) {
if (!NVolErrors(vol)) {
if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
ntfs_warning(sb, "Failed to clear dirty bit "
"in volume information "
"flags. Run chkdsk.");
ntfs_commit_inode(vol->vol_ino);
ntfs_commit_inode(vol->root_ino);
if (vol->mftmirr_ino)
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
} else {
ntfs_warning(sb, "Volume has errors. Leaving volume "
"marked dirty. Run chkdsk.");
}
}
#endif /* NTFS_RW */
iput(vol->vol_ino);
vol->vol_ino = NULL;
/* NTFS 3.0+ specific clean up. */
if (vol->major_ver >= 3) {
#ifdef NTFS_RW
if (vol->usnjrnl_j_ino) {
iput(vol->usnjrnl_j_ino);
vol->usnjrnl_j_ino = NULL;
}
if (vol->usnjrnl_max_ino) {
iput(vol->usnjrnl_max_ino);
vol->usnjrnl_max_ino = NULL;
}
if (vol->usnjrnl_ino) {
iput(vol->usnjrnl_ino);
vol->usnjrnl_ino = NULL;
}
if (vol->quota_q_ino) {
iput(vol->quota_q_ino);
vol->quota_q_ino = NULL;
}
if (vol->quota_ino) {
iput(vol->quota_ino);
vol->quota_ino = NULL;
}
#endif /* NTFS_RW */
if (vol->extend_ino) {
iput(vol->extend_ino);
vol->extend_ino = NULL;
}
if (vol->secure_ino) {
iput(vol->secure_ino);
vol->secure_ino = NULL;
}
}
iput(vol->root_ino);
vol->root_ino = NULL;
down_write(&vol->lcnbmp_lock);
iput(vol->lcnbmp_ino);
vol->lcnbmp_ino = NULL;
up_write(&vol->lcnbmp_lock);
down_write(&vol->mftbmp_lock);
iput(vol->mftbmp_ino);
vol->mftbmp_ino = NULL;
up_write(&vol->mftbmp_lock);
#ifdef NTFS_RW
if (vol->logfile_ino) {
iput(vol->logfile_ino);
vol->logfile_ino = NULL;
}
if (vol->mftmirr_ino) {
/* Re-commit the mft mirror and mft just in case. */
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
iput(vol->mftmirr_ino);
vol->mftmirr_ino = NULL;
}
/*
* We should have no dirty inodes left, due to
* mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
* the underlying mft records are written out and cleaned.
*/
ntfs_commit_inode(vol->mft_ino);
write_inode_now(vol->mft_ino, 1);
#endif /* NTFS_RW */
iput(vol->mft_ino);
vol->mft_ino = NULL;
/* Throw away the table of attribute definitions. */
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
vol->upcase_len = 0;
/*
* Destroy the global default upcase table if necessary. Also decrease
* the number of upcase users if we are a user.
*/
mutex_lock(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
if (!ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
free_compression_buffers();
mutex_unlock(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
unload_nls(vol->nls_map);
sb->s_fs_info = NULL;
kfree(vol);
}
/**
* get_nr_free_clusters - return the number of free clusters on a volume
* @vol: ntfs volume for which to obtain free cluster count
*
* Calculate the number of free clusters on the mounted NTFS volume @vol. We
* actually calculate the number of clusters in use instead because this
* allows us to not care about partial pages as these will be just zero filled
* and hence not be counted as allocated clusters.
*
* The only particularity is that clusters beyond the end of the logical ntfs
* volume will be marked as allocated to prevent errors which means we have to
* discount those at the end. This is important as the cluster bitmap always
* has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
* the logical volume and marked in use when they are not as they do not exist.
*
* If any pages cannot be read we assume all clusters in the erroring pages are
* in use. This means we return an underestimate on errors which is better than
* an overestimate.
*/
static s64 get_nr_free_clusters(ntfs_volume *vol)
{
s64 nr_free = vol->nr_clusters;
struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
struct page *page;
pgoff_t index, max_index;
ntfs_debug("Entering.");
/* Serialize accesses to the cluster bitmap. */
down_read(&vol->lcnbmp_lock);
/*
* Convert the number of bits into bytes rounded up, then convert into
* multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
* full and one partial page max_index = 2.
*/
max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
max_index, PAGE_CACHE_SIZE / 4);
for (index = 0; index < max_index; index++) {
unsigned long *kaddr;
/*
* Read the page from page cache, getting it from backing store
* if necessary, and increment the use count.
*/
page = read_mapping_page(mapping, index, NULL);
/* Ignore pages which errored synchronously. */
if (IS_ERR(page)) {
ntfs_debug("read_mapping_page() error. Skipping "
"page (index 0x%lx).", index);
nr_free -= PAGE_CACHE_SIZE * 8;
continue;
}
kaddr = kmap_atomic(page, KM_USER0);
/*
* Subtract the number of set bits. If this
* is the last page and it is partial we don't really care as
* it just means we do a little extra work but it won't affect
* the result as all out of range bytes are set to zero by
* ntfs_readpage().
*/
nr_free -= bitmap_weight(kaddr,
PAGE_CACHE_SIZE * BITS_PER_BYTE);
kunmap_atomic(kaddr, KM_USER0);
page_cache_release(page);
}
ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
/*
* Fixup for eventual bits outside logical ntfs volume (see function
* description above).
*/
if (vol->nr_clusters & 63)
nr_free += 64 - (vol->nr_clusters & 63);
up_read(&vol->lcnbmp_lock);
/* If errors occurred we may well have gone below zero, fix this. */
if (nr_free < 0)
nr_free = 0;
ntfs_debug("Exiting.");
return nr_free;
}
/**
* __get_nr_free_mft_records - return the number of free inodes on a volume
* @vol: ntfs volume for which to obtain free inode count
* @nr_free: number of mft records in filesystem
* @max_index: maximum number of pages containing set bits
*
* Calculate the number of free mft records (inodes) on the mounted NTFS
* volume @vol. We actually calculate the number of mft records in use instead
* because this allows us to not care about partial pages as these will be just
* zero filled and hence not be counted as allocated mft record.
*
* If any pages cannot be read we assume all mft records in the erroring pages
* are in use. This means we return an underestimate on errors which is better
* than an overestimate.
*
* NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
*/
static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
s64 nr_free, const pgoff_t max_index)
{
struct address_space *mapping = vol->mftbmp_ino->i_mapping;
struct page *page;
pgoff_t index;
ntfs_debug("Entering.");
/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
"0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
for (index = 0; index < max_index; index++) {
unsigned long *kaddr;
/*
* Read the page from page cache, getting it from backing store
* if necessary, and increment the use count.
*/
page = read_mapping_page(mapping, index, NULL);
/* Ignore pages which errored synchronously. */
if (IS_ERR(page)) {
ntfs_debug("read_mapping_page() error. Skipping "
"page (index 0x%lx).", index);
nr_free -= PAGE_CACHE_SIZE * 8;
continue;
}
kaddr = kmap_atomic(page, KM_USER0);
/*
* Subtract the number of set bits. If this
* is the last page and it is partial we don't really care as
* it just means we do a little extra work but it won't affect
* the result as all out of range bytes are set to zero by
* ntfs_readpage().
*/
nr_free -= bitmap_weight(kaddr,
PAGE_CACHE_SIZE * BITS_PER_BYTE);
kunmap_atomic(kaddr, KM_USER0);
page_cache_release(page);
}
ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
index - 1);
/* If errors occurred we may well have gone below zero, fix this. */
if (nr_free < 0)
nr_free = 0;
ntfs_debug("Exiting.");
return nr_free;
}
/**
* ntfs_statfs - return information about mounted NTFS volume
* @dentry: dentry from mounted volume
* @sfs: statfs structure in which to return the information
*
* Return information about the mounted NTFS volume @dentry in the statfs structure
* pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
* called). We interpret the values to be correct of the moment in time at
* which we are called. Most values are variable otherwise and this isn't just
* the free values but the totals as well. For example we can increase the
* total number of file nodes if we run out and we can keep doing this until
* there is no more space on the volume left at all.
*
* Called from vfs_statfs which is used to handle the statfs, fstatfs, and
* ustat system calls.
*
* Return 0 on success or -errno on error.
*/
static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
{
struct super_block *sb = dentry->d_sb;
s64 size;
ntfs_volume *vol = NTFS_SB(sb);
ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
pgoff_t max_index;
unsigned long flags;
ntfs_debug("Entering.");
/* Type of filesystem. */
sfs->f_type = NTFS_SB_MAGIC;
/* Optimal transfer block size. */
sfs->f_bsize = PAGE_CACHE_SIZE;
/*
* Total data blocks in filesystem in units of f_bsize and since
* inodes are also stored in data blocs ($MFT is a file) this is just
* the total clusters.
*/
sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
PAGE_CACHE_SHIFT;
/* Free data blocks in filesystem in units of f_bsize. */
size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
PAGE_CACHE_SHIFT;
if (size < 0LL)
size = 0LL;
/* Free blocks avail to non-superuser, same as above on NTFS. */
sfs->f_bavail = sfs->f_bfree = size;
/* Serialize accesses to the inode bitmap. */
down_read(&vol->mftbmp_lock);
read_lock_irqsave(&mft_ni->size_lock, flags);
size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
/*
* Convert the maximum number of set bits into bytes rounded up, then
* convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
* have one full and one partial page max_index = 2.
*/
max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
+ 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
read_unlock_irqrestore(&mft_ni->size_lock, flags);
/* Number of inodes in filesystem (at this point in time). */
sfs->f_files = size;
/* Free inodes in fs (based on current total count). */
sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
up_read(&vol->mftbmp_lock);
/*
* File system id. This is extremely *nix flavour dependent and even
* within Linux itself all fs do their own thing. I interpret this to
* mean a unique id associated with the mounted fs and not the id
* associated with the filesystem driver, the latter is already given
* by the filesystem type in sfs->f_type. Thus we use the 64-bit
* volume serial number splitting it into two 32-bit parts. We enter
* the least significant 32-bits in f_fsid[0] and the most significant
* 32-bits in f_fsid[1].
*/
sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
/* Maximum length of filenames. */
sfs->f_namelen = NTFS_MAX_NAME_LEN;
return 0;
}
#ifdef NTFS_RW
static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
{
return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
}
#endif
/**
* The complete super operations.
*/
static const struct super_operations ntfs_sops = {
.alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
.destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
#ifdef NTFS_RW
//.dirty_inode = NULL, /* VFS: Called from
// __mark_inode_dirty(). */
.write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
disk. */
//.drop_inode = NULL, /* VFS: Called just after the
// inode reference count has
// been decreased to zero.
// NOTE: The inode lock is
// held. See fs/inode.c::
// generic_drop_inode(). */
//.delete_inode = NULL, /* VFS: Delete inode from disk.
// Called when i_count becomes
// 0 and i_nlink is also 0. */
//.write_super = NULL, /* Flush dirty super block to
// disk. */
//.sync_fs = NULL, /* ? */
//.write_super_lockfs = NULL, /* ? */
//.unlockfs = NULL, /* ? */
#endif /* NTFS_RW */
.put_super = ntfs_put_super, /* Syscall: umount. */
.statfs = ntfs_statfs, /* Syscall: statfs */
.remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
.evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is
removed from memory. */
//.umount_begin = NULL, /* Forced umount. */
.show_options = ntfs_show_options, /* Show mount options in
proc. */
};
/**
* ntfs_fill_super - mount an ntfs filesystem
* @sb: super block of ntfs filesystem to mount
* @opt: string containing the mount options
* @silent: silence error output
*
* ntfs_fill_super() is called by the VFS to mount the device described by @sb
* with the mount otions in @data with the NTFS filesystem.
*
* If @silent is true, remain silent even if errors are detected. This is used
* during bootup, when the kernel tries to mount the root filesystem with all
* registered filesystems one after the other until one succeeds. This implies
* that all filesystems except the correct one will quite correctly and
* expectedly return an error, but nobody wants to see error messages when in
* fact this is what is supposed to happen.
*
* NOTE: @sb->s_flags contains the mount options flags.
*/
static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
{
ntfs_volume *vol;
struct buffer_head *bh;
struct inode *tmp_ino;
int blocksize, result;
/*
* We do a pretty difficult piece of bootstrap by reading the
* MFT (and other metadata) from disk into memory. We'll only
* release this metadata during umount, so the locking patterns
* observed during bootstrap do not count. So turn off the
* observation of locking patterns (strictly for this context
* only) while mounting NTFS. [The validator is still active
* otherwise, even for this context: it will for example record
* lock class registrations.]
*/
lockdep_off();
ntfs_debug("Entering.");
#ifndef NTFS_RW
sb->s_flags |= MS_RDONLY;
#endif /* ! NTFS_RW */
/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
vol = NTFS_SB(sb);
if (!vol) {
if (!silent)
ntfs_error(sb, "Allocation of NTFS volume structure "
"failed. Aborting mount...");
lockdep_on();
return -ENOMEM;
}
/* Initialize ntfs_volume structure. */
*vol = (ntfs_volume) {
.sb = sb,
/*
* Default is group and other don't have any access to files or
* directories while owner has full access. Further, files by
* default are not executable but directories are of course
* browseable.
*/
.fmask = 0177,
.dmask = 0077,
};
init_rwsem(&vol->mftbmp_lock);
init_rwsem(&vol->lcnbmp_lock);
/* By default, enable sparse support. */
NVolSetSparseEnabled(vol);
/* Important to get the mount options dealt with now. */
if (!parse_options(vol, (char*)opt))
goto err_out_now;
/* We support sector sizes up to the PAGE_CACHE_SIZE. */
if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
if (!silent)
ntfs_error(sb, "Device has unsupported sector size "
"(%i). The maximum supported sector "
"size on this architecture is %lu "
"bytes.",
bdev_logical_block_size(sb->s_bdev),
PAGE_CACHE_SIZE);
goto err_out_now;
}
/*
* Setup the device access block size to NTFS_BLOCK_SIZE or the hard
* sector size, whichever is bigger.
*/
blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
if (blocksize < NTFS_BLOCK_SIZE) {
if (!silent)
ntfs_error(sb, "Unable to set device block size.");
goto err_out_now;
}
BUG_ON(blocksize != sb->s_blocksize);
ntfs_debug("Set device block size to %i bytes (block size bits %i).",
blocksize, sb->s_blocksize_bits);
/* Determine the size of the device in units of block_size bytes. */
if (!i_size_read(sb->s_bdev->bd_inode)) {
if (!silent)
ntfs_error(sb, "Unable to determine device size.");
goto err_out_now;
}
vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
sb->s_blocksize_bits;
/* Read the boot sector and return unlocked buffer head to it. */
if (!(bh = read_ntfs_boot_sector(sb, silent))) {
if (!silent)
ntfs_error(sb, "Not an NTFS volume.");
goto err_out_now;
}
/*
* Extract the data from the boot sector and setup the ntfs volume
* using it.
*/
result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
brelse(bh);
if (!result) {
if (!silent)
ntfs_error(sb, "Unsupported NTFS filesystem.");
goto err_out_now;
}
/*
* If the boot sector indicates a sector size bigger than the current
* device block size, switch the device block size to the sector size.
* TODO: It may be possible to support this case even when the set
* below fails, we would just be breaking up the i/o for each sector
* into multiple blocks for i/o purposes but otherwise it should just
* work. However it is safer to leave disabled until someone hits this
* error message and then we can get them to try it without the setting
* so we know for sure that it works.
*/
if (vol->sector_size > blocksize) {
blocksize = sb_set_blocksize(sb, vol->sector_size);
if (blocksize != vol->sector_size) {
if (!silent)
ntfs_error(sb, "Unable to set device block "
"size to sector size (%i).",
vol->sector_size);
goto err_out_now;
}
BUG_ON(blocksize != sb->s_blocksize);
vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
sb->s_blocksize_bits;
ntfs_debug("Changed device block size to %i bytes (block size "
"bits %i) to match volume sector size.",
blocksize, sb->s_blocksize_bits);
}
/* Initialize the cluster and mft allocators. */
ntfs_setup_allocators(vol);
/* Setup remaining fields in the super block. */
sb->s_magic = NTFS_SB_MAGIC;
/*
* Ntfs allows 63 bits for the file size, i.e. correct would be:
* sb->s_maxbytes = ~0ULL >> 1;
* But the kernel uses a long as the page cache page index which on
* 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
* defined to the maximum the page cache page index can cope with
* without overflowing the index or to 2^63 - 1, whichever is smaller.
*/
sb->s_maxbytes = MAX_LFS_FILESIZE;
/* Ntfs measures time in 100ns intervals. */
sb->s_time_gran = 100;
/*
* Now load the metadata required for the page cache and our address
* space operations to function. We do this by setting up a specialised
* read_inode method and then just calling the normal iget() to obtain
* the inode for $MFT which is sufficient to allow our normal inode
* operations and associated address space operations to function.
*/
sb->s_op = &ntfs_sops;
tmp_ino = new_inode(sb);
if (!tmp_ino) {
if (!silent)
ntfs_error(sb, "Failed to load essential metadata.");
goto err_out_now;
}
tmp_ino->i_ino = FILE_MFT;
insert_inode_hash(tmp_ino);
if (ntfs_read_inode_mount(tmp_ino) < 0) {
if (!silent)
ntfs_error(sb, "Failed to load essential metadata.");
goto iput_tmp_ino_err_out_now;
}
mutex_lock(&ntfs_lock);
/*
* The current mount is a compression user if the cluster size is
* less than or equal 4kiB.
*/
if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
result = allocate_compression_buffers();
if (result) {
ntfs_error(NULL, "Failed to allocate buffers "
"for compression engine.");
ntfs_nr_compression_users--;
mutex_unlock(&ntfs_lock);
goto iput_tmp_ino_err_out_now;
}
}
/*
* Generate the global default upcase table if necessary. Also
* temporarily increment the number of upcase users to avoid race
* conditions with concurrent (u)mounts.
*/
if (!default_upcase)
default_upcase = generate_default_upcase();
ntfs_nr_upcase_users++;
mutex_unlock(&ntfs_lock);
/*
* From now on, ignore @silent parameter. If we fail below this line,
* it will be due to a corrupt fs or a system error, so we report it.
*/
/*
* Open the system files with normal access functions and complete
* setting up the ntfs super block.
*/
if (!load_system_files(vol)) {
ntfs_error(sb, "Failed to load system files.");
goto unl_upcase_iput_tmp_ino_err_out_now;
}
/* We grab a reference, simulating an ntfs_iget(). */
ihold(vol->root_ino);
if ((sb->s_root = d_make_root(vol->root_ino))) {
ntfs_debug("Exiting, status successful.");
/* Release the default upcase if it has no users. */
mutex_lock(&ntfs_lock);
if (!--ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
mutex_unlock(&ntfs_lock);
sb->s_export_op = &ntfs_export_ops;
lockdep_on();
return 0;
}
ntfs_error(sb, "Failed to allocate root directory.");
/* Clean up after the successful load_system_files() call from above. */
// TODO: Use ntfs_put_super() instead of repeating all this code...
// FIXME: Should mark the volume clean as the error is most likely
// -ENOMEM.
iput(vol->vol_ino);
vol->vol_ino = NULL;
/* NTFS 3.0+ specific clean up. */
if (vol->major_ver >= 3) {
#ifdef NTFS_RW
if (vol->usnjrnl_j_ino) {
iput(vol->usnjrnl_j_ino);
vol->usnjrnl_j_ino = NULL;
}
if (vol->usnjrnl_max_ino) {
iput(vol->usnjrnl_max_ino);
vol->usnjrnl_max_ino = NULL;
}
if (vol->usnjrnl_ino) {
iput(vol->usnjrnl_ino);
vol->usnjrnl_ino = NULL;
}
if (vol->quota_q_ino) {
iput(vol->quota_q_ino);
vol->quota_q_ino = NULL;
}
if (vol->quota_ino) {
iput(vol->quota_ino);
vol->quota_ino = NULL;
}
#endif /* NTFS_RW */
if (vol->extend_ino) {
iput(vol->extend_ino);
vol->extend_ino = NULL;
}
if (vol->secure_ino) {
iput(vol->secure_ino);
vol->secure_ino = NULL;
}
}
iput(vol->root_ino);
vol->root_ino = NULL;
iput(vol->lcnbmp_ino);
vol->lcnbmp_ino = NULL;
iput(vol->mftbmp_ino);
vol->mftbmp_ino = NULL;
#ifdef NTFS_RW
if (vol->logfile_ino) {
iput(vol->logfile_ino);
vol->logfile_ino = NULL;
}
if (vol->mftmirr_ino) {
iput(vol->mftmirr_ino);
vol->mftmirr_ino = NULL;
}
#endif /* NTFS_RW */
/* Throw away the table of attribute definitions. */
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
vol->upcase_len = 0;
mutex_lock(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
mutex_unlock(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
if (vol->nls_map) {
unload_nls(vol->nls_map);
vol->nls_map = NULL;
}
/* Error exit code path. */
unl_upcase_iput_tmp_ino_err_out_now:
/*
* Decrease the number of upcase users and destroy the global default
* upcase table if necessary.
*/
mutex_lock(&ntfs_lock);
if (!--ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
free_compression_buffers();
mutex_unlock(&ntfs_lock);
iput_tmp_ino_err_out_now:
iput(tmp_ino);
if (vol->mft_ino && vol->mft_ino != tmp_ino)
iput(vol->mft_ino);
vol->mft_ino = NULL;
/* Errors at this stage are irrelevant. */
err_out_now:
sb->s_fs_info = NULL;
kfree(vol);
ntfs_debug("Failed, returning -EINVAL.");
lockdep_on();
return -EINVAL;
}
/*
* This is a slab cache to optimize allocations and deallocations of Unicode
* strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
* (255) Unicode characters + a terminating NULL Unicode character.
*/
struct kmem_cache *ntfs_name_cache;
/* Slab caches for efficient allocation/deallocation of inodes. */
struct kmem_cache *ntfs_inode_cache;
struct kmem_cache *ntfs_big_inode_cache;
/* Init once constructor for the inode slab cache. */
static void ntfs_big_inode_init_once(void *foo)
{
ntfs_inode *ni = (ntfs_inode *)foo;
inode_init_once(VFS_I(ni));
}
/*
* Slab caches to optimize allocations and deallocations of attribute search
* contexts and index contexts, respectively.
*/
struct kmem_cache *ntfs_attr_ctx_cache;
struct kmem_cache *ntfs_index_ctx_cache;
/* Driver wide mutex. */
DEFINE_MUTEX(ntfs_lock);
static struct dentry *ntfs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
}
static struct file_system_type ntfs_fs_type = {
.owner = THIS_MODULE,
.name = "ntfs",
.mount = ntfs_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
/* Stable names for the slab caches. */
static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
static const char ntfs_name_cache_name[] = "ntfs_name_cache";
static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
static int __init init_ntfs_fs(void)
{
int err = 0;
/* This may be ugly but it results in pretty output so who cares. (-8 */
printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
#ifdef NTFS_RW
"W"
#else
"O"
#endif
#ifdef DEBUG
" DEBUG"
#endif
#ifdef MODULE
" MODULE"
#endif
"].\n");
ntfs_debug("Debug messages are enabled.");
ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
sizeof(ntfs_index_context), 0 /* offset */,
SLAB_HWCACHE_ALIGN, NULL /* ctor */);
if (!ntfs_index_ctx_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_index_ctx_cache_name);
goto ictx_err_out;
}
ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
sizeof(ntfs_attr_search_ctx), 0 /* offset */,
SLAB_HWCACHE_ALIGN, NULL /* ctor */);
if (!ntfs_attr_ctx_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_attr_ctx_cache_name);
goto actx_err_out;
}
ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!ntfs_name_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_name_cache_name);
goto name_err_out;
}
ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
sizeof(ntfs_inode), 0,
SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
if (!ntfs_inode_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_inode_cache_name);
goto inode_err_out;
}
ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
sizeof(big_ntfs_inode), 0,
[PATCH] cpuset memory spread: slab cache filesystems Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD memory spreading. If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's in a cpuset with the 'memory_spread_slab' option enabled goes to allocate from such a slab cache, the allocations are spread evenly over all the memory nodes (task->mems_allowed) allowed to that task, instead of favoring allocation on the node local to the current cpu. The following inode and similar caches are marked SLAB_MEM_SPREAD: file cache ==== ===== fs/adfs/super.c adfs_inode_cache fs/affs/super.c affs_inode_cache fs/befs/linuxvfs.c befs_inode_cache fs/bfs/inode.c bfs_inode_cache fs/block_dev.c bdev_cache fs/cifs/cifsfs.c cifs_inode_cache fs/coda/inode.c coda_inode_cache fs/dquot.c dquot fs/efs/super.c efs_inode_cache fs/ext2/super.c ext2_inode_cache fs/ext2/xattr.c (fs/mbcache.c) ext2_xattr fs/ext3/super.c ext3_inode_cache fs/ext3/xattr.c (fs/mbcache.c) ext3_xattr fs/fat/cache.c fat_cache fs/fat/inode.c fat_inode_cache fs/freevxfs/vxfs_super.c vxfs_inode fs/hpfs/super.c hpfs_inode_cache fs/isofs/inode.c isofs_inode_cache fs/jffs/inode-v23.c jffs_fm fs/jffs2/super.c jffs2_i fs/jfs/super.c jfs_ip fs/minix/inode.c minix_inode_cache fs/ncpfs/inode.c ncp_inode_cache fs/nfs/direct.c nfs_direct_cache fs/nfs/inode.c nfs_inode_cache fs/ntfs/super.c ntfs_big_inode_cache_name fs/ntfs/super.c ntfs_inode_cache fs/ocfs2/dlm/dlmfs.c dlmfs_inode_cache fs/ocfs2/super.c ocfs2_inode_cache fs/proc/inode.c proc_inode_cache fs/qnx4/inode.c qnx4_inode_cache fs/reiserfs/super.c reiser_inode_cache fs/romfs/inode.c romfs_inode_cache fs/smbfs/inode.c smb_inode_cache fs/sysv/inode.c sysv_inode_cache fs/udf/super.c udf_inode_cache fs/ufs/super.c ufs_inode_cache net/socket.c sock_inode_cache net/sunrpc/rpc_pipe.c rpc_inode_cache The choice of which slab caches to so mark was quite simple. I marked those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache, inode_cache, and buffer_head, which were marked in a previous patch. Even though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same potentially large file system i/o related slab caches as we need for memory spreading. Given that the rule now becomes "wherever you would have used a SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain. Future file system writers will just copy one of the existing file system slab cache setups and tend to get it right without thinking. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24 18:16:05 +07:00
SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
ntfs_big_inode_init_once);
if (!ntfs_big_inode_cache) {
printk(KERN_CRIT "NTFS: Failed to create %s!\n",
ntfs_big_inode_cache_name);
goto big_inode_err_out;
}
/* Register the ntfs sysctls. */
err = ntfs_sysctl(1);
if (err) {
printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
goto sysctl_err_out;
}
err = register_filesystem(&ntfs_fs_type);
if (!err) {
ntfs_debug("NTFS driver registered successfully.");
return 0; /* Success! */
}
printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
sysctl_err_out:
kmem_cache_destroy(ntfs_big_inode_cache);
big_inode_err_out:
kmem_cache_destroy(ntfs_inode_cache);
inode_err_out:
kmem_cache_destroy(ntfs_name_cache);
name_err_out:
kmem_cache_destroy(ntfs_attr_ctx_cache);
actx_err_out:
kmem_cache_destroy(ntfs_index_ctx_cache);
ictx_err_out:
if (!err) {
printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
"registration...\n");
err = -ENOMEM;
}
return err;
}
static void __exit exit_ntfs_fs(void)
{
ntfs_debug("Unregistering NTFS driver.");
unregister_filesystem(&ntfs_fs_type);
kmem_cache_destroy(ntfs_big_inode_cache);
kmem_cache_destroy(ntfs_inode_cache);
kmem_cache_destroy(ntfs_name_cache);
kmem_cache_destroy(ntfs_attr_ctx_cache);
kmem_cache_destroy(ntfs_index_ctx_cache);
/* Unregister the ntfs sysctls. */
ntfs_sysctl(0);
}
MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.");
MODULE_VERSION(NTFS_VERSION);
MODULE_LICENSE("GPL");
#ifdef DEBUG
module_param(debug_msgs, bint, 0);
MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
#endif
module_init(init_ntfs_fs)
module_exit(exit_ntfs_fs)