linux_dsm_epyc7002/arch/arm/include/asm/smp_plat.h

121 lines
2.5 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-28 02:55:43 +07:00
/*
* ARM specific SMP header, this contains our implementation
* details.
*/
#ifndef __ASMARM_SMP_PLAT_H
#define __ASMARM_SMP_PLAT_H
#include <linux/cpumask.h>
#include <linux/err.h>
#include <asm/cpu.h>
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-28 02:55:43 +07:00
#include <asm/cputype.h>
/*
* Return true if we are running on a SMP platform
*/
static inline bool is_smp(void)
{
#ifndef CONFIG_SMP
return false;
#elif defined(CONFIG_SMP_ON_UP)
extern unsigned int smp_on_up;
return !!smp_on_up;
#else
return true;
#endif
}
/**
* smp_cpuid_part() - return part id for a given cpu
* @cpu: logical cpu id.
*
* Return: part id of logical cpu passed as argument.
*/
static inline unsigned int smp_cpuid_part(int cpu)
{
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpu);
return is_smp() ? cpu_info->cpuid & ARM_CPU_PART_MASK :
read_cpuid_part();
}
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-28 02:55:43 +07:00
/* all SMP configurations have the extended CPUID registers */
#ifndef CONFIG_MMU
#define tlb_ops_need_broadcast() 0
#else
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-28 02:55:43 +07:00
static inline int tlb_ops_need_broadcast(void)
{
if (!is_smp())
return 0;
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-28 02:55:43 +07:00
return ((read_cpuid_ext(CPUID_EXT_MMFR3) >> 12) & 0xf) < 2;
}
#endif
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-28 02:55:43 +07:00
#if !defined(CONFIG_SMP) || __LINUX_ARM_ARCH__ >= 7
#define cache_ops_need_broadcast() 0
#else
static inline int cache_ops_need_broadcast(void)
{
if (!is_smp())
return 0;
return ((read_cpuid_ext(CPUID_EXT_MMFR3) >> 12) & 0xf) < 1;
}
#endif
/*
* Logical CPU mapping.
*/
extern u32 __cpu_logical_map[];
#define cpu_logical_map(cpu) __cpu_logical_map[cpu]
/*
* Retrieve logical cpu index corresponding to a given MPIDR[23:0]
* - mpidr: MPIDR[23:0] to be used for the look-up
*
* Returns the cpu logical index or -EINVAL on look-up error
*/
static inline int get_logical_index(u32 mpidr)
{
int cpu;
for (cpu = 0; cpu < nr_cpu_ids; cpu++)
if (cpu_logical_map(cpu) == mpidr)
return cpu;
return -EINVAL;
}
ARM: kernel: implement stack pointer save array through MPIDR hashing Current implementation of cpu_{suspend}/cpu_{resume} relies on the MPIDR to index the array of pointers where the context is saved and restored. The current approach works as long as the MPIDR can be considered a linear index, so that the pointers array can simply be dereferenced by using the MPIDR[7:0] value. On ARM multi-cluster systems, where the MPIDR may not be a linear index, to properly dereference the stack pointer array, a mapping function should be applied to it so that it can be used for arrays look-ups. This patch adds code in the cpu_{suspend}/cpu_{resume} implementation that relies on shifting and ORing hashing method to map a MPIDR value to a set of buckets precomputed at boot to have a collision free mapping from MPIDR to context pointers. The hashing algorithm must be simple, fast, and implementable with few instructions since in the cpu_resume path the mapping is carried out with the MMU off and the I-cache off, hence code and data are fetched from DRAM with no-caching available. Simplicity is counterbalanced with a little increase of memory (allocated dynamically) for stack pointers buckets, that should be anyway fairly limited on most systems. Memory for context pointers is allocated in a early_initcall with size precomputed and stashed previously in kernel data structures. Memory for context pointers is allocated through kmalloc; this guarantees contiguous physical addresses for the allocated memory which is fundamental to the correct functioning of the resume mechanism that relies on the context pointer array to be a chunk of contiguous physical memory. Virtual to physical address conversion for the context pointer array base is carried out at boot to avoid fiddling with virt_to_phys conversions in the cpu_resume path which is quite fragile and should be optimized to execute as few instructions as possible. Virtual and physical context pointer base array addresses are stashed in a struct that is accessible from assembly using values generated through the asm-offsets.c mechanism. Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Colin Cross <ccross@android.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Amit Kucheria <amit.kucheria@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Nicolas Pitre <nico@linaro.org> Tested-by: Shawn Guo <shawn.guo@linaro.org> Tested-by: Kevin Hilman <khilman@linaro.org> Tested-by: Stephen Warren <swarren@wwwdotorg.org>
2013-05-16 16:34:30 +07:00
/*
* NOTE ! Assembly code relies on the following
* structure memory layout in order to carry out load
* multiple from its base address. For more
* information check arch/arm/kernel/sleep.S
*/
ARM: kernel: build MPIDR hash function data structure On ARM SMP systems, cores are identified by their MPIDR register. The MPIDR guidelines in the ARM ARM do not provide strict enforcement of MPIDR layout, only recommendations that, if followed, split the MPIDR on ARM 32 bit platforms in three affinity levels. In multi-cluster systems like big.LITTLE, if the affinity guidelines are followed, the MPIDR can not be considered an index anymore. This means that the association between logical CPU in the kernel and the HW CPU identifier becomes somewhat more complicated requiring methods like hashing to associate a given MPIDR to a CPU logical index, in order for the look-up to be carried out in an efficient and scalable way. This patch provides a function in the kernel that starting from the cpu_logical_map, implement collision-free hashing of MPIDR values by checking all significative bits of MPIDR affinity level bitfields. The hashing can then be carried out through bits shifting and ORing; the resulting hash algorithm is a collision-free though not minimal hash that can be executed with few assembly instructions. The mpidr is filtered through a mpidr mask that is built by checking all bits that toggle in the set of MPIDRs corresponding to possible CPUs. Bits that do not toggle do not carry information so they do not contribute to the resulting hash. Pseudo code: /* check all bits that toggle, so they are required */ for (i = 1, mpidr_mask = 0; i < num_possible_cpus(); i++) mpidr_mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); /* * Build shifts to be applied to aff0, aff1, aff2 values to hash the mpidr * fls() returns the last bit set in a word, 0 if none * ffs() returns the first bit set in a word, 0 if none */ fs0 = mpidr_mask[7:0] ? ffs(mpidr_mask[7:0]) - 1 : 0; fs1 = mpidr_mask[15:8] ? ffs(mpidr_mask[15:8]) - 1 : 0; fs2 = mpidr_mask[23:16] ? ffs(mpidr_mask[23:16]) - 1 : 0; ls0 = fls(mpidr_mask[7:0]); ls1 = fls(mpidr_mask[15:8]); ls2 = fls(mpidr_mask[23:16]); bits0 = ls0 - fs0; bits1 = ls1 - fs1; bits2 = ls2 - fs2; aff0_shift = fs0; aff1_shift = 8 + fs1 - bits0; aff2_shift = 16 + fs2 - (bits0 + bits1); u32 hash(u32 mpidr) { u32 l0, l1, l2; u32 mpidr_masked = mpidr & mpidr_mask; l0 = mpidr_masked & 0xff; l1 = mpidr_masked & 0xff00; l2 = mpidr_masked & 0xff0000; return (l0 >> aff0_shift | l1 >> aff1_shift | l2 >> aff2_shift); } The hashing algorithm relies on the inherent properties set in the ARM ARM recommendations for the MPIDR. Exotic configurations, where for instance the MPIDR values at a given affinity level have large holes, can end up requiring big hash tables since the compression of values that can be achieved through shifting is somewhat crippled when holes are present. Kernel warns if the number of buckets of the resulting hash table exceeds the number of possible CPUs by a factor of 4, which is a symptom of a very sparse HW MPIDR configuration. The hash algorithm is quite simple and can easily be implemented in assembly code, to be used in code paths where the kernel virtual address space is not set-up (ie cpu_resume) and instruction and data fetches are strongly ordered so code must be compact and must carry out few data accesses. Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Colin Cross <ccross@android.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Amit Kucheria <amit.kucheria@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Nicolas Pitre <nico@linaro.org> Tested-by: Shawn Guo <shawn.guo@linaro.org> Tested-by: Kevin Hilman <khilman@linaro.org> Tested-by: Stephen Warren <swarren@wwwdotorg.org>
2013-05-16 16:32:09 +07:00
struct mpidr_hash {
ARM: kernel: implement stack pointer save array through MPIDR hashing Current implementation of cpu_{suspend}/cpu_{resume} relies on the MPIDR to index the array of pointers where the context is saved and restored. The current approach works as long as the MPIDR can be considered a linear index, so that the pointers array can simply be dereferenced by using the MPIDR[7:0] value. On ARM multi-cluster systems, where the MPIDR may not be a linear index, to properly dereference the stack pointer array, a mapping function should be applied to it so that it can be used for arrays look-ups. This patch adds code in the cpu_{suspend}/cpu_{resume} implementation that relies on shifting and ORing hashing method to map a MPIDR value to a set of buckets precomputed at boot to have a collision free mapping from MPIDR to context pointers. The hashing algorithm must be simple, fast, and implementable with few instructions since in the cpu_resume path the mapping is carried out with the MMU off and the I-cache off, hence code and data are fetched from DRAM with no-caching available. Simplicity is counterbalanced with a little increase of memory (allocated dynamically) for stack pointers buckets, that should be anyway fairly limited on most systems. Memory for context pointers is allocated in a early_initcall with size precomputed and stashed previously in kernel data structures. Memory for context pointers is allocated through kmalloc; this guarantees contiguous physical addresses for the allocated memory which is fundamental to the correct functioning of the resume mechanism that relies on the context pointer array to be a chunk of contiguous physical memory. Virtual to physical address conversion for the context pointer array base is carried out at boot to avoid fiddling with virt_to_phys conversions in the cpu_resume path which is quite fragile and should be optimized to execute as few instructions as possible. Virtual and physical context pointer base array addresses are stashed in a struct that is accessible from assembly using values generated through the asm-offsets.c mechanism. Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Colin Cross <ccross@android.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Amit Kucheria <amit.kucheria@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Nicolas Pitre <nico@linaro.org> Tested-by: Shawn Guo <shawn.guo@linaro.org> Tested-by: Kevin Hilman <khilman@linaro.org> Tested-by: Stephen Warren <swarren@wwwdotorg.org>
2013-05-16 16:34:30 +07:00
u32 mask; /* used by sleep.S */
u32 shift_aff[3]; /* used by sleep.S */
ARM: kernel: build MPIDR hash function data structure On ARM SMP systems, cores are identified by their MPIDR register. The MPIDR guidelines in the ARM ARM do not provide strict enforcement of MPIDR layout, only recommendations that, if followed, split the MPIDR on ARM 32 bit platforms in three affinity levels. In multi-cluster systems like big.LITTLE, if the affinity guidelines are followed, the MPIDR can not be considered an index anymore. This means that the association between logical CPU in the kernel and the HW CPU identifier becomes somewhat more complicated requiring methods like hashing to associate a given MPIDR to a CPU logical index, in order for the look-up to be carried out in an efficient and scalable way. This patch provides a function in the kernel that starting from the cpu_logical_map, implement collision-free hashing of MPIDR values by checking all significative bits of MPIDR affinity level bitfields. The hashing can then be carried out through bits shifting and ORing; the resulting hash algorithm is a collision-free though not minimal hash that can be executed with few assembly instructions. The mpidr is filtered through a mpidr mask that is built by checking all bits that toggle in the set of MPIDRs corresponding to possible CPUs. Bits that do not toggle do not carry information so they do not contribute to the resulting hash. Pseudo code: /* check all bits that toggle, so they are required */ for (i = 1, mpidr_mask = 0; i < num_possible_cpus(); i++) mpidr_mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); /* * Build shifts to be applied to aff0, aff1, aff2 values to hash the mpidr * fls() returns the last bit set in a word, 0 if none * ffs() returns the first bit set in a word, 0 if none */ fs0 = mpidr_mask[7:0] ? ffs(mpidr_mask[7:0]) - 1 : 0; fs1 = mpidr_mask[15:8] ? ffs(mpidr_mask[15:8]) - 1 : 0; fs2 = mpidr_mask[23:16] ? ffs(mpidr_mask[23:16]) - 1 : 0; ls0 = fls(mpidr_mask[7:0]); ls1 = fls(mpidr_mask[15:8]); ls2 = fls(mpidr_mask[23:16]); bits0 = ls0 - fs0; bits1 = ls1 - fs1; bits2 = ls2 - fs2; aff0_shift = fs0; aff1_shift = 8 + fs1 - bits0; aff2_shift = 16 + fs2 - (bits0 + bits1); u32 hash(u32 mpidr) { u32 l0, l1, l2; u32 mpidr_masked = mpidr & mpidr_mask; l0 = mpidr_masked & 0xff; l1 = mpidr_masked & 0xff00; l2 = mpidr_masked & 0xff0000; return (l0 >> aff0_shift | l1 >> aff1_shift | l2 >> aff2_shift); } The hashing algorithm relies on the inherent properties set in the ARM ARM recommendations for the MPIDR. Exotic configurations, where for instance the MPIDR values at a given affinity level have large holes, can end up requiring big hash tables since the compression of values that can be achieved through shifting is somewhat crippled when holes are present. Kernel warns if the number of buckets of the resulting hash table exceeds the number of possible CPUs by a factor of 4, which is a symptom of a very sparse HW MPIDR configuration. The hash algorithm is quite simple and can easily be implemented in assembly code, to be used in code paths where the kernel virtual address space is not set-up (ie cpu_resume) and instruction and data fetches are strongly ordered so code must be compact and must carry out few data accesses. Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Colin Cross <ccross@android.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Amit Kucheria <amit.kucheria@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Nicolas Pitre <nico@linaro.org> Tested-by: Shawn Guo <shawn.guo@linaro.org> Tested-by: Kevin Hilman <khilman@linaro.org> Tested-by: Stephen Warren <swarren@wwwdotorg.org>
2013-05-16 16:32:09 +07:00
u32 bits;
};
extern struct mpidr_hash mpidr_hash;
static inline u32 mpidr_hash_size(void)
{
return 1 << mpidr_hash.bits;
}
extern int platform_can_secondary_boot(void);
extern int platform_can_cpu_hotplug(void);
ARM: 8392/3: smp: Only expose /sys/.../cpuX/online if hotpluggable Writes to /sys/.../cpuX/online fail if we determine the platform doesn't support hotplug for that CPU. Furthermore, if the cpu_die op isn't specified the system hangs when we try to offline a CPU and it comes right back online unexpectedly. Let's figure this stuff out before we make the sysfs nodes so that the online file doesn't even exist if it isn't (at least sometimes) possible to hotplug the CPU. Add a new 'cpu_can_disable' op and repoint all 'cpu_disable' implementations at it because all implementers use the op to indicate if a CPU can be hotplugged or not in a static fashion. With PSCI we may need to add a 'cpu_disable' op so that the secure OS can be migrated off the CPU we're trying to hotplug. In this case, the 'cpu_can_disable' op will indicate that all CPUs are hotpluggable by returning true, but the 'cpu_disable' op will make a PSCI migration call and occasionally fail, denying the hotplug of a CPU. This shouldn't be any worse than x86 where we may indicate that all CPUs are hotpluggable but occasionally we can't offline a CPU due to check_irq_vectors_for_cpu_disable() failing to find a CPU to move vectors to. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Nicolas Pitre <nico@linaro.org> Cc: Dave Martin <Dave.Martin@arm.com> Acked-by: Simon Horman <horms@verge.net.au> [shmobile portion] Tested-by: Simon Horman <horms@verge.net.au> Cc: Magnus Damm <magnus.damm@gmail.com> Cc: <linux-sh@vger.kernel.org> Tested-by: Tyler Baker <tyler.baker@linaro.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Stephen Boyd <sboyd@codeaurora.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-07-29 06:34:48 +07:00
#ifdef CONFIG_HOTPLUG_CPU
extern int platform_can_hotplug_cpu(unsigned int cpu);
#else
static inline int platform_can_hotplug_cpu(unsigned int cpu)
{
return 0;
}
#endif
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-28 02:55:43 +07:00
#endif