linux_dsm_epyc7002/arch/s390/kernel/crash_dump.c

664 lines
16 KiB
C
Raw Normal View History

/*
* S390 kdump implementation
*
* Copyright IBM Corp. 2011
* Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
*/
#include <linux/crash_dump.h>
#include <asm/lowcore.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/elf.h>
#include <linux/memblock.h>
#include <asm/os_info.h>
#include <asm/elf.h>
#include <asm/ipl.h>
#include <asm/sclp.h>
#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
static struct memblock_region oldmem_region;
static struct memblock_type oldmem_type = {
.cnt = 1,
.max = 1,
.total_size = 0,
.regions = &oldmem_region,
};
#define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid) \
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
for (i = 0, __next_mem_range(&i, nid, MEMBLOCK_NONE, \
&memblock.physmem, \
&oldmem_type, p_start, \
p_end, p_nid); \
i != (u64)ULLONG_MAX; \
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
__next_mem_range(&i, nid, MEMBLOCK_NONE, &memblock.physmem,\
&oldmem_type, \
p_start, p_end, p_nid))
struct dump_save_areas dump_save_areas;
/*
* Return physical address for virtual address
*/
static inline void *load_real_addr(void *addr)
{
unsigned long real_addr;
asm volatile(
" lra %0,0(%1)\n"
" jz 0f\n"
" la %0,0\n"
"0:"
: "=a" (real_addr) : "a" (addr) : "cc");
return (void *)real_addr;
}
/*
* Copy real to virtual or real memory
*/
static int copy_from_realmem(void *dest, void *src, size_t count)
{
unsigned long size;
if (!count)
return 0;
if (!is_vmalloc_or_module_addr(dest))
return memcpy_real(dest, src, count);
do {
size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
if (memcpy_real(load_real_addr(dest), src, size))
return -EFAULT;
count -= size;
dest += size;
src += size;
} while (count);
return 0;
}
/*
* Pointer to ELF header in new kernel
*/
static void *elfcorehdr_newmem;
/*
* Copy one page from zfcpdump "oldmem"
*
* For pages below HSA size memory from the HSA is copied. Otherwise
* real memory copy is used.
*/
static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
unsigned long src, int userbuf)
{
int rc;
if (src < sclp.hsa_size) {
rc = memcpy_hsa(buf, src, csize, userbuf);
} else {
if (userbuf)
rc = copy_to_user_real((void __force __user *) buf,
(void *) src, csize);
else
rc = memcpy_real(buf, (void *) src, csize);
}
return rc ? rc : csize;
}
/*
* Copy one page from kdump "oldmem"
*
* For the kdump reserved memory this functions performs a swap operation:
* - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
* - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
*/
static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
unsigned long src, int userbuf)
{
int rc;
if (src < OLDMEM_SIZE)
src += OLDMEM_BASE;
else if (src > OLDMEM_BASE &&
src < OLDMEM_BASE + OLDMEM_SIZE)
src -= OLDMEM_BASE;
if (userbuf)
rc = copy_to_user_real((void __force __user *) buf,
(void *) src, csize);
else
rc = copy_from_realmem(buf, (void *) src, csize);
return (rc == 0) ? rc : csize;
}
/*
* Copy one page from "oldmem"
*/
ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
unsigned long offset, int userbuf)
{
unsigned long src;
if (!csize)
return 0;
src = (pfn << PAGE_SHIFT) + offset;
if (OLDMEM_BASE)
return copy_oldmem_page_kdump(buf, csize, src, userbuf);
else
return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
}
/*
* Remap "oldmem" for kdump
*
* For the kdump reserved memory this functions performs a swap operation:
* [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
*/
static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
unsigned long from, unsigned long pfn,
unsigned long size, pgprot_t prot)
{
unsigned long size_old;
int rc;
if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
rc = remap_pfn_range(vma, from,
pfn + (OLDMEM_BASE >> PAGE_SHIFT),
size_old, prot);
if (rc || size == size_old)
return rc;
size -= size_old;
from += size_old;
pfn += size_old >> PAGE_SHIFT;
}
return remap_pfn_range(vma, from, pfn, size, prot);
}
/*
* Remap "oldmem" for zfcpdump
*
* We only map available memory above HSA size. Memory below HSA size
* is read on demand using the copy_oldmem_page() function.
*/
static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
unsigned long from,
unsigned long pfn,
unsigned long size, pgprot_t prot)
{
unsigned long hsa_end = sclp.hsa_size;
unsigned long size_hsa;
if (pfn < hsa_end >> PAGE_SHIFT) {
size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
if (size == size_hsa)
return 0;
size -= size_hsa;
from += size_hsa;
pfn += size_hsa >> PAGE_SHIFT;
}
return remap_pfn_range(vma, from, pfn, size, prot);
}
/*
* Remap "oldmem" for kdump or zfcpdump
*/
int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
if (OLDMEM_BASE)
return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
else
return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
prot);
}
/*
* Copy memory from old kernel
*/
int copy_from_oldmem(void *dest, void *src, size_t count)
{
unsigned long copied = 0;
int rc;
if (OLDMEM_BASE) {
if ((unsigned long) src < OLDMEM_SIZE) {
copied = min(count, OLDMEM_SIZE - (unsigned long) src);
rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
if (rc)
return rc;
}
} else {
unsigned long hsa_end = sclp.hsa_size;
if ((unsigned long) src < hsa_end) {
copied = min(count, hsa_end - (unsigned long) src);
rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
if (rc)
return rc;
}
}
return copy_from_realmem(dest + copied, src + copied, count - copied);
}
/*
* Alloc memory and panic in case of ENOMEM
*/
static void *kzalloc_panic(int len)
{
void *rc;
rc = kzalloc(len, GFP_KERNEL);
if (!rc)
panic("s390 kdump kzalloc (%d) failed", len);
return rc;
}
/*
* Initialize ELF note
*/
static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
const char *name)
{
Elf64_Nhdr *note;
u64 len;
note = (Elf64_Nhdr *)buf;
note->n_namesz = strlen(name) + 1;
note->n_descsz = d_len;
note->n_type = type;
len = sizeof(Elf64_Nhdr);
memcpy(buf + len, name, note->n_namesz);
len = roundup(len + note->n_namesz, 4);
memcpy(buf + len, desc, note->n_descsz);
len = roundup(len + note->n_descsz, 4);
return PTR_ADD(buf, len);
}
/*
* Initialize prstatus note
*/
static void *nt_prstatus(void *ptr, struct save_area *sa)
{
struct elf_prstatus nt_prstatus;
static int cpu_nr = 1;
memset(&nt_prstatus, 0, sizeof(nt_prstatus));
memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
nt_prstatus.pr_pid = cpu_nr;
cpu_nr++;
return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
"CORE");
}
/*
* Initialize fpregset (floating point) note
*/
static void *nt_fpregset(void *ptr, struct save_area *sa)
{
elf_fpregset_t nt_fpregset;
memset(&nt_fpregset, 0, sizeof(nt_fpregset));
memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
"CORE");
}
/*
* Initialize timer note
*/
static void *nt_s390_timer(void *ptr, struct save_area *sa)
{
return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
KEXEC_CORE_NOTE_NAME);
}
/*
* Initialize TOD clock comparator note
*/
static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
{
return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
}
/*
* Initialize TOD programmable register note
*/
static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
{
return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
}
/*
* Initialize control register note
*/
static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
{
return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
}
/*
* Initialize prefix register note
*/
static void *nt_s390_prefix(void *ptr, struct save_area *sa)
{
return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
}
/*
* Initialize vxrs high note (full 128 bit VX registers 16-31)
*/
static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
{
return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
}
/*
* Initialize vxrs low note (lower halves of VX registers 0-15)
*/
static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
{
Elf64_Nhdr *note;
u64 len;
int i;
note = (Elf64_Nhdr *)ptr;
note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
note->n_descsz = 16 * 8;
note->n_type = NT_S390_VXRS_LOW;
len = sizeof(Elf64_Nhdr);
memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
len = roundup(len + note->n_namesz, 4);
ptr += len;
/* Copy lower halves of SIMD registers 0-15 */
for (i = 0; i < 16; i++) {
memcpy(ptr, &vx_regs[i].u[2], 8);
ptr += 8;
}
return ptr;
}
/*
* Fill ELF notes for one CPU with save area registers
*/
void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
{
ptr = nt_prstatus(ptr, sa);
ptr = nt_fpregset(ptr, sa);
ptr = nt_s390_timer(ptr, sa);
ptr = nt_s390_tod_cmp(ptr, sa);
ptr = nt_s390_tod_preg(ptr, sa);
ptr = nt_s390_ctrs(ptr, sa);
ptr = nt_s390_prefix(ptr, sa);
if (MACHINE_HAS_VX && vx_regs) {
ptr = nt_s390_vx_low(ptr, vx_regs);
ptr = nt_s390_vx_high(ptr, vx_regs);
}
return ptr;
}
/*
* Initialize prpsinfo note (new kernel)
*/
static void *nt_prpsinfo(void *ptr)
{
struct elf_prpsinfo prpsinfo;
memset(&prpsinfo, 0, sizeof(prpsinfo));
prpsinfo.pr_sname = 'R';
strcpy(prpsinfo.pr_fname, "vmlinux");
return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
KEXEC_CORE_NOTE_NAME);
}
/*
* Get vmcoreinfo using lowcore->vmcore_info (new kernel)
*/
static void *get_vmcoreinfo_old(unsigned long *size)
{
char nt_name[11], *vmcoreinfo;
Elf64_Nhdr note;
void *addr;
if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
return NULL;
memset(nt_name, 0, sizeof(nt_name));
if (copy_from_oldmem(&note, addr, sizeof(note)))
return NULL;
if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
return NULL;
if (strcmp(nt_name, "VMCOREINFO") != 0)
return NULL;
vmcoreinfo = kzalloc_panic(note.n_descsz);
if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
return NULL;
*size = note.n_descsz;
return vmcoreinfo;
}
/*
* Initialize vmcoreinfo note (new kernel)
*/
static void *nt_vmcoreinfo(void *ptr)
{
unsigned long size;
void *vmcoreinfo;
vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
if (!vmcoreinfo)
vmcoreinfo = get_vmcoreinfo_old(&size);
if (!vmcoreinfo)
return ptr;
return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
}
/*
* Initialize ELF header (new kernel)
*/
static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
{
memset(ehdr, 0, sizeof(*ehdr));
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
ehdr->e_type = ET_CORE;
ehdr->e_machine = EM_S390;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(Elf64_Ehdr);
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
ehdr->e_phentsize = sizeof(Elf64_Phdr);
ehdr->e_phnum = mem_chunk_cnt + 1;
return ehdr + 1;
}
/*
* Return CPU count for ELF header (new kernel)
*/
static int get_cpu_cnt(void)
{
int i, cpus = 0;
for (i = 0; i < dump_save_areas.count; i++) {
if (dump_save_areas.areas[i]->sa.pref_reg == 0)
continue;
cpus++;
}
return cpus;
}
/*
* Return memory chunk count for ELF header (new kernel)
*/
static int get_mem_chunk_cnt(void)
{
int cnt = 0;
u64 idx;
for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
cnt++;
return cnt;
}
/*
* Initialize ELF loads (new kernel)
*/
static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
{
phys_addr_t start, end;
u64 idx;
for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
phdr->p_filesz = end - start;
phdr->p_type = PT_LOAD;
phdr->p_offset = start;
phdr->p_vaddr = start;
phdr->p_paddr = start;
phdr->p_memsz = end - start;
phdr->p_flags = PF_R | PF_W | PF_X;
phdr->p_align = PAGE_SIZE;
phdr++;
}
}
/*
* Initialize notes (new kernel)
*/
static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
{
struct save_area_ext *sa_ext;
void *ptr_start = ptr;
int i;
ptr = nt_prpsinfo(ptr);
for (i = 0; i < dump_save_areas.count; i++) {
sa_ext = dump_save_areas.areas[i];
if (sa_ext->sa.pref_reg == 0)
continue;
ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
}
ptr = nt_vmcoreinfo(ptr);
memset(phdr, 0, sizeof(*phdr));
phdr->p_type = PT_NOTE;
phdr->p_offset = notes_offset;
phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
phdr->p_memsz = phdr->p_filesz;
return ptr;
}
/*
* Create ELF core header (new kernel)
*/
int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
{
Elf64_Phdr *phdr_notes, *phdr_loads;
int mem_chunk_cnt;
void *ptr, *hdr;
u32 alloc_size;
u64 hdr_off;
/* If we are not in kdump or zfcpdump mode return */
if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
return 0;
/* If elfcorehdr= has been passed via cmdline, we use that one */
if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
return 0;
/* If we cannot get HSA size for zfcpdump return error */
if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
return -ENODEV;
/* For kdump, exclude previous crashkernel memory */
if (OLDMEM_BASE) {
oldmem_region.base = OLDMEM_BASE;
oldmem_region.size = OLDMEM_SIZE;
oldmem_type.total_size = OLDMEM_SIZE;
}
mem_chunk_cnt = get_mem_chunk_cnt();
alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
mem_chunk_cnt * sizeof(Elf64_Phdr);
hdr = kzalloc_panic(alloc_size);
/* Init elf header */
ptr = ehdr_init(hdr, mem_chunk_cnt);
/* Init program headers */
phdr_notes = ptr;
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
phdr_loads = ptr;
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
/* Init notes */
hdr_off = PTR_DIFF(ptr, hdr);
ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
/* Init loads */
hdr_off = PTR_DIFF(ptr, hdr);
loads_init(phdr_loads, hdr_off);
*addr = (unsigned long long) hdr;
elfcorehdr_newmem = hdr;
*size = (unsigned long long) hdr_off;
BUG_ON(elfcorehdr_size > alloc_size);
return 0;
}
/*
* Free ELF core header (new kernel)
*/
void elfcorehdr_free(unsigned long long addr)
{
if (!elfcorehdr_newmem)
return;
kfree((void *)(unsigned long)addr);
}
/*
* Read from ELF header
*/
ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
{
void *src = (void *)(unsigned long)*ppos;
src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
memcpy(buf, src, count);
*ppos += count;
return count;
}
/*
* Read from ELF notes data
*/
ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
{
void *src = (void *)(unsigned long)*ppos;
int rc;
if (elfcorehdr_newmem) {
memcpy(buf, src, count);
} else {
rc = copy_from_oldmem(buf, src, count);
if (rc)
return rc;
}
*ppos += count;
return count;
}