linux_dsm_epyc7002/include/linux/pm_domain.h

314 lines
9.4 KiB
C
Raw Normal View History

/*
* pm_domain.h - Definitions and headers related to device power domains.
*
* Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp.
*
* This file is released under the GPLv2.
*/
#ifndef _LINUX_PM_DOMAIN_H
#define _LINUX_PM_DOMAIN_H
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/notifier.h>
PM / Domains: Add preliminary support for cpuidle, v2 On some systems there are CPU cores located in the same power domains as I/O devices. Then, power can only be removed from the domain if all I/O devices in it are not in use and the CPU core is idle. Add preliminary support for that to the generic PM domains framework. First, the platform is expected to provide a cpuidle driver with one extra state designated for use with the generic PM domains code. This state should be initially disabled and its exit_latency value should be set to whatever time is needed to bring up the CPU core itself after restoring power to it, not including the domain's power on latency. Its .enter() callback should point to a procedure that will remove power from the domain containing the CPU core at the end of the CPU power transition. The remaining characteristics of the extra cpuidle state, referred to as the "domain" cpuidle state below, (e.g. power usage, target residency) should be populated in accordance with the properties of the hardware. Next, the platform should execute genpd_attach_cpuidle() on the PM domain containing the CPU core. That will cause the generic PM domains framework to treat that domain in a special way such that: * When all devices in the domain have been suspended and it is about to be turned off, the states of the devices will be saved, but power will not be removed from the domain. Instead, the "domain" cpuidle state will be enabled so that power can be removed from the domain when the CPU core is idle and the state has been chosen as the target by the cpuidle governor. * When the first I/O device in the domain is resumed and __pm_genpd_poweron(() is called for the first time after power has been removed from the domain, the "domain" cpuidle state will be disabled to avoid subsequent surprise power removals via cpuidle. The effective exit_latency value of the "domain" cpuidle state depends on the time needed to bring up the CPU core itself after restoring power to it as well as on the power on latency of the domain containing the CPU core. Thus the "domain" cpuidle state's exit_latency has to be recomputed every time the domain's power on latency is updated, which may happen every time power is restored to the domain, if the measured power on latency is greater than the latency stored in the corresponding generic_pm_domain structure. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-07-04 00:07:42 +07:00
#include <linux/cpuidle.h>
enum gpd_status {
GPD_STATE_ACTIVE = 0, /* PM domain is active */
GPD_STATE_WAIT_MASTER, /* PM domain's master is being waited for */
GPD_STATE_BUSY, /* Something is happening to the PM domain */
PM / Domains: Allow callbacks to execute all runtime PM helpers A deadlock may occur if one of the PM domains' .start_device() or .stop_device() callbacks or a device driver's .runtime_suspend() or .runtime_resume() callback executed by the core generic PM domain code uses a "wrong" runtime PM helper function. This happens, for example, if .runtime_resume() from one device's driver calls pm_runtime_resume() for another device in the same PM domain. A similar situation may take place if a device's parent is in the same PM domain, in which case the runtime PM framework may execute pm_genpd_runtime_resume() automatically for the parent (if it is suspended at the moment). This, of course, is undesirable, so the generic PM domains code should be modified to prevent it from happening. The runtime PM framework guarantees that pm_genpd_runtime_suspend() and pm_genpd_runtime_resume() won't be executed in parallel for the same device, so the generic PM domains code need not worry about those cases. Still, it needs to prevent the other possible race conditions between pm_genpd_runtime_suspend(), pm_genpd_runtime_resume(), pm_genpd_poweron() and pm_genpd_poweroff() from happening and it needs to avoid deadlocks at the same time. To this end, modify the generic PM domains code to relax synchronization rules so that: * pm_genpd_poweron() doesn't wait for the PM domain status to change from GPD_STATE_BUSY. If it finds that the status is not GPD_STATE_POWER_OFF, it returns without powering the domain on (it may modify the status depending on the circumstances). * pm_genpd_poweroff() returns as soon as it finds that the PM domain's status changed from GPD_STATE_BUSY after it's released the PM domain's lock. * pm_genpd_runtime_suspend() doesn't wait for the PM domain status to change from GPD_STATE_BUSY after executing the domain's .stop_device() callback and executes pm_genpd_poweroff() only if pm_genpd_runtime_resume() is not executed in parallel. * pm_genpd_runtime_resume() doesn't wait for the PM domain status to change from GPD_STATE_BUSY after executing pm_genpd_poweron() and sets the domain's status to GPD_STATE_BUSY and increments its counter of resuming devices (introduced by this change) immediately after acquiring the lock. The counter of resuming devices is then decremented after executing __pm_genpd_runtime_resume() for the device and the domain's status is reset to GPD_STATE_ACTIVE (unless there are more resuming devices in the domain, in which case the status remains GPD_STATE_BUSY). This way, for example, if a device driver's .runtime_resume() callback executes pm_runtime_resume() for another device in the same PM domain, pm_genpd_poweron() called by pm_genpd_runtime_resume() invoked by the runtime PM framework will not block and it will see that there's nothing to do for it. Next, the PM domain's lock will be acquired without waiting for its status to change from GPD_STATE_BUSY and the device driver's .runtime_resume() callback will be executed. In turn, if pm_runtime_suspend() is executed by one device driver's .runtime_resume() callback for another device in the same PM domain, pm_genpd_poweroff() executed by pm_genpd_runtime_suspend() invoked by the runtime PM framework as a result will notice that one of the devices in the domain is being resumed, so it will return immediately. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-07-12 05:39:36 +07:00
GPD_STATE_REPEAT, /* Power off in progress, to be repeated */
GPD_STATE_POWER_OFF, /* PM domain is off */
};
PM / Domains: System-wide transitions support for generic domains (v5) Make generic PM domains support system-wide power transitions (system suspend and hibernation). Add suspend, resume, freeze, thaw, poweroff and restore callbacks to be associated with struct generic_pm_domain objects and make pm_genpd_init() use them as appropriate. The new callbacks do nothing for devices belonging to power domains that were powered down at run time (before the transition). For the other devices the action carried out depends on the type of the transition. During system suspend the power domain .suspend() callback executes pm_generic_suspend() for the device, while the PM domain .suspend_noirq() callback runs pm_generic_suspend_noirq() for it, stops it and eventually removes power from the PM domain it belongs to (after all devices in the domain have been stopped and its subdomains have been powered off). During system resume the PM domain .resume_noirq() callback restores power to the PM domain (when executed for it first time), starts the device and executes pm_generic_resume_noirq() for it, while the .resume() callback executes pm_generic_resume() for the device. Finally, the .complete() callback executes pm_runtime_idle() for the device which should put it back into the suspended state if its runtime PM usage count is equal to zero at that time. The actions carried out during hibernation and resume from it are analogous to the ones described above. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2011-07-02 03:13:19 +07:00
struct dev_power_governor {
bool (*power_down_ok)(struct dev_pm_domain *domain);
bool (*stop_ok)(struct device *dev);
};
struct gpd_dev_ops {
int (*start)(struct device *dev);
int (*stop)(struct device *dev);
int (*save_state)(struct device *dev);
int (*restore_state)(struct device *dev);
PM / Domains: Rework system suspend callback routines (v2) The current generic PM domains code attempts to use the generic system suspend operations along with the domains' device stop/start routines, which requires device drivers to assume that their system suspend/resume (and hibernation/restore) callbacks will always be used with generic PM domains. However, in theory, the same hardware may be used in devices that don't belong to any PM domain, in which case it would be necessary to add "fake" PM domains to satisfy the above assumption. Also, the domain the hardware belongs to may not be handled with the help of the generic code. To allow device drivers that may be used along with the generic PM domains code of more flexibility, add new device callbacks, .suspend(), .suspend_late(), .resume_early(), .resume(), .freeze(), .freeze_late(), .thaw_early(), and .thaw(), that can be supplied by the drivers in addition to their "standard" system suspend and hibernation callbacks. These new callbacks, if defined, will be used by the generic PM domains code for the handling of system suspend and hibernation instead of the "standard" ones. This will allow drivers to be designed to work with generic PM domains as well as without them. For backwards compatibility, introduce default implementations of the new callbacks for PM domains that will execute pm_generic_suspend(), pm_generic_suspend_noirq(), pm_generic_resume_noirq(), pm_generic_resume(), pm_generic_freeze(), pm_generic_freeze_noirq(), pm_generic_thaw_noirq(), and pm_generic_thaw(), respectively, for the given device if its driver doesn't define those callbacks. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-11-27 19:11:51 +07:00
int (*suspend)(struct device *dev);
int (*suspend_late)(struct device *dev);
int (*resume_early)(struct device *dev);
int (*resume)(struct device *dev);
int (*freeze)(struct device *dev);
int (*freeze_late)(struct device *dev);
int (*thaw_early)(struct device *dev);
int (*thaw)(struct device *dev);
bool (*active_wakeup)(struct device *dev);
};
PM / Domains: Add preliminary support for cpuidle, v2 On some systems there are CPU cores located in the same power domains as I/O devices. Then, power can only be removed from the domain if all I/O devices in it are not in use and the CPU core is idle. Add preliminary support for that to the generic PM domains framework. First, the platform is expected to provide a cpuidle driver with one extra state designated for use with the generic PM domains code. This state should be initially disabled and its exit_latency value should be set to whatever time is needed to bring up the CPU core itself after restoring power to it, not including the domain's power on latency. Its .enter() callback should point to a procedure that will remove power from the domain containing the CPU core at the end of the CPU power transition. The remaining characteristics of the extra cpuidle state, referred to as the "domain" cpuidle state below, (e.g. power usage, target residency) should be populated in accordance with the properties of the hardware. Next, the platform should execute genpd_attach_cpuidle() on the PM domain containing the CPU core. That will cause the generic PM domains framework to treat that domain in a special way such that: * When all devices in the domain have been suspended and it is about to be turned off, the states of the devices will be saved, but power will not be removed from the domain. Instead, the "domain" cpuidle state will be enabled so that power can be removed from the domain when the CPU core is idle and the state has been chosen as the target by the cpuidle governor. * When the first I/O device in the domain is resumed and __pm_genpd_poweron(() is called for the first time after power has been removed from the domain, the "domain" cpuidle state will be disabled to avoid subsequent surprise power removals via cpuidle. The effective exit_latency value of the "domain" cpuidle state depends on the time needed to bring up the CPU core itself after restoring power to it as well as on the power on latency of the domain containing the CPU core. Thus the "domain" cpuidle state's exit_latency has to be recomputed every time the domain's power on latency is updated, which may happen every time power is restored to the domain, if the measured power on latency is greater than the latency stored in the corresponding generic_pm_domain structure. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-07-04 00:07:42 +07:00
struct gpd_cpu_data {
unsigned int saved_exit_latency;
struct cpuidle_state *idle_state;
};
struct generic_pm_domain {
struct dev_pm_domain domain; /* PM domain operations */
struct list_head gpd_list_node; /* Node in the global PM domains list */
PM / Domains: Allow generic PM domains to have multiple masters Currently, for a given generic PM domain there may be only one parent domain (i.e. a PM domain it depends on). However, there is at least one real-life case in which there should be two parents (masters) for one PM domain (the A3RV domain on SH7372 turns out to depend on the A4LC domain and it depends on the A4R domain and the same time). For this reason, allow a PM domain to have multiple parents (masters) by introducing objects representing links between PM domains. The (logical) links between PM domains represent relationships in which one domain is a master (i.e. it is depended on) and another domain is a slave (i.e. it depends on the master) with the rule that the slave cannot be powered on if the master is not powered on and the master cannot be powered off if the slave is not powered off. Each struct generic_pm_domain object representing a PM domain has two lists of links, a list of links in which it is a master and a list of links in which it is a slave. The first of these lists replaces the list of subdomains and the second one is used in place of the parent pointer. Each link is represented by struct gpd_link object containing pointers to the master and the slave and two struct list_head members allowing it to hook into two lists (the master's list of "master" links and the slave's list of "slave" links). This allows the code to get to the link from each side (either from the master or from the slave) and follow it in each direction. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-09 04:43:40 +07:00
struct list_head master_links; /* Links with PM domain as a master */
struct list_head slave_links; /* Links with PM domain as a slave */
struct list_head dev_list; /* List of devices */
struct mutex lock;
struct dev_power_governor *gov;
struct work_struct power_off_work;
char *name;
unsigned int in_progress; /* Number of devices being suspended now */
atomic_t sd_count; /* Number of subdomains with power "on" */
enum gpd_status status; /* Current state of the domain */
wait_queue_head_t status_wait_queue;
PM / Domains: Allow callbacks to execute all runtime PM helpers A deadlock may occur if one of the PM domains' .start_device() or .stop_device() callbacks or a device driver's .runtime_suspend() or .runtime_resume() callback executed by the core generic PM domain code uses a "wrong" runtime PM helper function. This happens, for example, if .runtime_resume() from one device's driver calls pm_runtime_resume() for another device in the same PM domain. A similar situation may take place if a device's parent is in the same PM domain, in which case the runtime PM framework may execute pm_genpd_runtime_resume() automatically for the parent (if it is suspended at the moment). This, of course, is undesirable, so the generic PM domains code should be modified to prevent it from happening. The runtime PM framework guarantees that pm_genpd_runtime_suspend() and pm_genpd_runtime_resume() won't be executed in parallel for the same device, so the generic PM domains code need not worry about those cases. Still, it needs to prevent the other possible race conditions between pm_genpd_runtime_suspend(), pm_genpd_runtime_resume(), pm_genpd_poweron() and pm_genpd_poweroff() from happening and it needs to avoid deadlocks at the same time. To this end, modify the generic PM domains code to relax synchronization rules so that: * pm_genpd_poweron() doesn't wait for the PM domain status to change from GPD_STATE_BUSY. If it finds that the status is not GPD_STATE_POWER_OFF, it returns without powering the domain on (it may modify the status depending on the circumstances). * pm_genpd_poweroff() returns as soon as it finds that the PM domain's status changed from GPD_STATE_BUSY after it's released the PM domain's lock. * pm_genpd_runtime_suspend() doesn't wait for the PM domain status to change from GPD_STATE_BUSY after executing the domain's .stop_device() callback and executes pm_genpd_poweroff() only if pm_genpd_runtime_resume() is not executed in parallel. * pm_genpd_runtime_resume() doesn't wait for the PM domain status to change from GPD_STATE_BUSY after executing pm_genpd_poweron() and sets the domain's status to GPD_STATE_BUSY and increments its counter of resuming devices (introduced by this change) immediately after acquiring the lock. The counter of resuming devices is then decremented after executing __pm_genpd_runtime_resume() for the device and the domain's status is reset to GPD_STATE_ACTIVE (unless there are more resuming devices in the domain, in which case the status remains GPD_STATE_BUSY). This way, for example, if a device driver's .runtime_resume() callback executes pm_runtime_resume() for another device in the same PM domain, pm_genpd_poweron() called by pm_genpd_runtime_resume() invoked by the runtime PM framework will not block and it will see that there's nothing to do for it. Next, the PM domain's lock will be acquired without waiting for its status to change from GPD_STATE_BUSY and the device driver's .runtime_resume() callback will be executed. In turn, if pm_runtime_suspend() is executed by one device driver's .runtime_resume() callback for another device in the same PM domain, pm_genpd_poweroff() executed by pm_genpd_runtime_suspend() invoked by the runtime PM framework as a result will notice that one of the devices in the domain is being resumed, so it will return immediately. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-07-12 05:39:36 +07:00
struct task_struct *poweroff_task; /* Powering off task */
unsigned int resume_count; /* Number of devices being resumed */
PM / Domains: System-wide transitions support for generic domains (v5) Make generic PM domains support system-wide power transitions (system suspend and hibernation). Add suspend, resume, freeze, thaw, poweroff and restore callbacks to be associated with struct generic_pm_domain objects and make pm_genpd_init() use them as appropriate. The new callbacks do nothing for devices belonging to power domains that were powered down at run time (before the transition). For the other devices the action carried out depends on the type of the transition. During system suspend the power domain .suspend() callback executes pm_generic_suspend() for the device, while the PM domain .suspend_noirq() callback runs pm_generic_suspend_noirq() for it, stops it and eventually removes power from the PM domain it belongs to (after all devices in the domain have been stopped and its subdomains have been powered off). During system resume the PM domain .resume_noirq() callback restores power to the PM domain (when executed for it first time), starts the device and executes pm_generic_resume_noirq() for it, while the .resume() callback executes pm_generic_resume() for the device. Finally, the .complete() callback executes pm_runtime_idle() for the device which should put it back into the suspended state if its runtime PM usage count is equal to zero at that time. The actions carried out during hibernation and resume from it are analogous to the ones described above. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2011-07-02 03:13:19 +07:00
unsigned int device_count; /* Number of devices */
unsigned int suspended_count; /* System suspend device counter */
unsigned int prepared_count; /* Suspend counter of prepared devices */
bool suspend_power_off; /* Power status before system suspend */
bool dev_irq_safe; /* Device callbacks are IRQ-safe */
int (*power_off)(struct generic_pm_domain *domain);
s64 power_off_latency_ns;
int (*power_on)(struct generic_pm_domain *domain);
s64 power_on_latency_ns;
struct gpd_dev_ops dev_ops;
s64 max_off_time_ns; /* Maximum allowed "suspended" time. */
bool max_off_time_changed;
bool cached_power_down_ok;
struct device_node *of_node; /* Node in device tree */
PM / Domains: Add preliminary support for cpuidle, v2 On some systems there are CPU cores located in the same power domains as I/O devices. Then, power can only be removed from the domain if all I/O devices in it are not in use and the CPU core is idle. Add preliminary support for that to the generic PM domains framework. First, the platform is expected to provide a cpuidle driver with one extra state designated for use with the generic PM domains code. This state should be initially disabled and its exit_latency value should be set to whatever time is needed to bring up the CPU core itself after restoring power to it, not including the domain's power on latency. Its .enter() callback should point to a procedure that will remove power from the domain containing the CPU core at the end of the CPU power transition. The remaining characteristics of the extra cpuidle state, referred to as the "domain" cpuidle state below, (e.g. power usage, target residency) should be populated in accordance with the properties of the hardware. Next, the platform should execute genpd_attach_cpuidle() on the PM domain containing the CPU core. That will cause the generic PM domains framework to treat that domain in a special way such that: * When all devices in the domain have been suspended and it is about to be turned off, the states of the devices will be saved, but power will not be removed from the domain. Instead, the "domain" cpuidle state will be enabled so that power can be removed from the domain when the CPU core is idle and the state has been chosen as the target by the cpuidle governor. * When the first I/O device in the domain is resumed and __pm_genpd_poweron(() is called for the first time after power has been removed from the domain, the "domain" cpuidle state will be disabled to avoid subsequent surprise power removals via cpuidle. The effective exit_latency value of the "domain" cpuidle state depends on the time needed to bring up the CPU core itself after restoring power to it as well as on the power on latency of the domain containing the CPU core. Thus the "domain" cpuidle state's exit_latency has to be recomputed every time the domain's power on latency is updated, which may happen every time power is restored to the domain, if the measured power on latency is greater than the latency stored in the corresponding generic_pm_domain structure. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-07-04 00:07:42 +07:00
struct gpd_cpu_data *cpu_data;
};
PM / Domains: System-wide transitions support for generic domains (v5) Make generic PM domains support system-wide power transitions (system suspend and hibernation). Add suspend, resume, freeze, thaw, poweroff and restore callbacks to be associated with struct generic_pm_domain objects and make pm_genpd_init() use them as appropriate. The new callbacks do nothing for devices belonging to power domains that were powered down at run time (before the transition). For the other devices the action carried out depends on the type of the transition. During system suspend the power domain .suspend() callback executes pm_generic_suspend() for the device, while the PM domain .suspend_noirq() callback runs pm_generic_suspend_noirq() for it, stops it and eventually removes power from the PM domain it belongs to (after all devices in the domain have been stopped and its subdomains have been powered off). During system resume the PM domain .resume_noirq() callback restores power to the PM domain (when executed for it first time), starts the device and executes pm_generic_resume_noirq() for it, while the .resume() callback executes pm_generic_resume() for the device. Finally, the .complete() callback executes pm_runtime_idle() for the device which should put it back into the suspended state if its runtime PM usage count is equal to zero at that time. The actions carried out during hibernation and resume from it are analogous to the ones described above. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2011-07-02 03:13:19 +07:00
static inline struct generic_pm_domain *pd_to_genpd(struct dev_pm_domain *pd)
{
return container_of(pd, struct generic_pm_domain, domain);
}
PM / Domains: Allow generic PM domains to have multiple masters Currently, for a given generic PM domain there may be only one parent domain (i.e. a PM domain it depends on). However, there is at least one real-life case in which there should be two parents (masters) for one PM domain (the A3RV domain on SH7372 turns out to depend on the A4LC domain and it depends on the A4R domain and the same time). For this reason, allow a PM domain to have multiple parents (masters) by introducing objects representing links between PM domains. The (logical) links between PM domains represent relationships in which one domain is a master (i.e. it is depended on) and another domain is a slave (i.e. it depends on the master) with the rule that the slave cannot be powered on if the master is not powered on and the master cannot be powered off if the slave is not powered off. Each struct generic_pm_domain object representing a PM domain has two lists of links, a list of links in which it is a master and a list of links in which it is a slave. The first of these lists replaces the list of subdomains and the second one is used in place of the parent pointer. Each link is represented by struct gpd_link object containing pointers to the master and the slave and two struct list_head members allowing it to hook into two lists (the master's list of "master" links and the slave's list of "slave" links). This allows the code to get to the link from each side (either from the master or from the slave) and follow it in each direction. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-09 04:43:40 +07:00
struct gpd_link {
struct generic_pm_domain *master;
struct list_head master_node;
struct generic_pm_domain *slave;
struct list_head slave_node;
};
struct gpd_timing_data {
s64 stop_latency_ns;
s64 start_latency_ns;
s64 save_state_latency_ns;
s64 restore_state_latency_ns;
s64 effective_constraint_ns;
bool constraint_changed;
bool cached_stop_ok;
};
struct generic_pm_domain_data {
struct pm_domain_data base;
struct gpd_dev_ops ops;
struct gpd_timing_data td;
struct notifier_block nb;
struct mutex lock;
unsigned int refcount;
bool need_restore;
};
#ifdef CONFIG_PM_GENERIC_DOMAINS
static inline struct generic_pm_domain_data *to_gpd_data(struct pm_domain_data *pdd)
{
return container_of(pdd, struct generic_pm_domain_data, base);
}
static inline struct generic_pm_domain_data *dev_gpd_data(struct device *dev)
{
return to_gpd_data(dev->power.subsys_data->domain_data);
}
extern struct dev_power_governor simple_qos_governor;
extern struct generic_pm_domain *dev_to_genpd(struct device *dev);
extern int __pm_genpd_add_device(struct generic_pm_domain *genpd,
struct device *dev,
struct gpd_timing_data *td);
extern int __pm_genpd_of_add_device(struct device_node *genpd_node,
struct device *dev,
struct gpd_timing_data *td);
extern int __pm_genpd_name_add_device(const char *domain_name,
struct device *dev,
struct gpd_timing_data *td);
extern int pm_genpd_remove_device(struct generic_pm_domain *genpd,
struct device *dev);
extern void pm_genpd_dev_need_restore(struct device *dev, bool val);
extern int pm_genpd_add_subdomain(struct generic_pm_domain *genpd,
struct generic_pm_domain *new_subdomain);
extern int pm_genpd_add_subdomain_names(const char *master_name,
const char *subdomain_name);
extern int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd,
struct generic_pm_domain *target);
extern int pm_genpd_add_callbacks(struct device *dev,
struct gpd_dev_ops *ops,
struct gpd_timing_data *td);
extern int __pm_genpd_remove_callbacks(struct device *dev, bool clear_td);
extern int pm_genpd_attach_cpuidle(struct generic_pm_domain *genpd, int state);
extern int pm_genpd_name_attach_cpuidle(const char *name, int state);
extern int pm_genpd_detach_cpuidle(struct generic_pm_domain *genpd);
extern int pm_genpd_name_detach_cpuidle(const char *name);
extern void pm_genpd_init(struct generic_pm_domain *genpd,
struct dev_power_governor *gov, bool is_off);
extern int pm_genpd_poweron(struct generic_pm_domain *genpd);
extern int pm_genpd_name_poweron(const char *domain_name);
extern bool default_stop_ok(struct device *dev);
extern struct dev_power_governor pm_domain_always_on_gov;
#else
static inline struct generic_pm_domain_data *dev_gpd_data(struct device *dev)
{
return ERR_PTR(-ENOSYS);
}
static inline struct generic_pm_domain *dev_to_genpd(struct device *dev)
{
return ERR_PTR(-ENOSYS);
}
static inline int __pm_genpd_add_device(struct generic_pm_domain *genpd,
struct device *dev,
struct gpd_timing_data *td)
{
return -ENOSYS;
}
static inline int __pm_genpd_of_add_device(struct device_node *genpd_node,
struct device *dev,
struct gpd_timing_data *td)
{
return -ENOSYS;
}
static inline int __pm_genpd_name_add_device(const char *domain_name,
struct device *dev,
struct gpd_timing_data *td)
{
return -ENOSYS;
}
static inline int pm_genpd_remove_device(struct generic_pm_domain *genpd,
struct device *dev)
{
return -ENOSYS;
}
static inline void pm_genpd_dev_need_restore(struct device *dev, bool val) {}
static inline int pm_genpd_add_subdomain(struct generic_pm_domain *genpd,
struct generic_pm_domain *new_sd)
{
return -ENOSYS;
}
static inline int pm_genpd_add_subdomain_names(const char *master_name,
const char *subdomain_name)
{
return -ENOSYS;
}
static inline int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd,
struct generic_pm_domain *target)
{
return -ENOSYS;
}
static inline int pm_genpd_add_callbacks(struct device *dev,
struct gpd_dev_ops *ops,
struct gpd_timing_data *td)
{
return -ENOSYS;
}
static inline int __pm_genpd_remove_callbacks(struct device *dev, bool clear_td)
{
return -ENOSYS;
}
static inline int pm_genpd_attach_cpuidle(struct generic_pm_domain *genpd, int st)
PM / Domains: Add preliminary support for cpuidle, v2 On some systems there are CPU cores located in the same power domains as I/O devices. Then, power can only be removed from the domain if all I/O devices in it are not in use and the CPU core is idle. Add preliminary support for that to the generic PM domains framework. First, the platform is expected to provide a cpuidle driver with one extra state designated for use with the generic PM domains code. This state should be initially disabled and its exit_latency value should be set to whatever time is needed to bring up the CPU core itself after restoring power to it, not including the domain's power on latency. Its .enter() callback should point to a procedure that will remove power from the domain containing the CPU core at the end of the CPU power transition. The remaining characteristics of the extra cpuidle state, referred to as the "domain" cpuidle state below, (e.g. power usage, target residency) should be populated in accordance with the properties of the hardware. Next, the platform should execute genpd_attach_cpuidle() on the PM domain containing the CPU core. That will cause the generic PM domains framework to treat that domain in a special way such that: * When all devices in the domain have been suspended and it is about to be turned off, the states of the devices will be saved, but power will not be removed from the domain. Instead, the "domain" cpuidle state will be enabled so that power can be removed from the domain when the CPU core is idle and the state has been chosen as the target by the cpuidle governor. * When the first I/O device in the domain is resumed and __pm_genpd_poweron(() is called for the first time after power has been removed from the domain, the "domain" cpuidle state will be disabled to avoid subsequent surprise power removals via cpuidle. The effective exit_latency value of the "domain" cpuidle state depends on the time needed to bring up the CPU core itself after restoring power to it as well as on the power on latency of the domain containing the CPU core. Thus the "domain" cpuidle state's exit_latency has to be recomputed every time the domain's power on latency is updated, which may happen every time power is restored to the domain, if the measured power on latency is greater than the latency stored in the corresponding generic_pm_domain structure. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-07-04 00:07:42 +07:00
{
return -ENOSYS;
}
static inline int pm_genpd_name_attach_cpuidle(const char *name, int state)
{
return -ENOSYS;
}
static inline int pm_genpd_detach_cpuidle(struct generic_pm_domain *genpd)
PM / Domains: Add preliminary support for cpuidle, v2 On some systems there are CPU cores located in the same power domains as I/O devices. Then, power can only be removed from the domain if all I/O devices in it are not in use and the CPU core is idle. Add preliminary support for that to the generic PM domains framework. First, the platform is expected to provide a cpuidle driver with one extra state designated for use with the generic PM domains code. This state should be initially disabled and its exit_latency value should be set to whatever time is needed to bring up the CPU core itself after restoring power to it, not including the domain's power on latency. Its .enter() callback should point to a procedure that will remove power from the domain containing the CPU core at the end of the CPU power transition. The remaining characteristics of the extra cpuidle state, referred to as the "domain" cpuidle state below, (e.g. power usage, target residency) should be populated in accordance with the properties of the hardware. Next, the platform should execute genpd_attach_cpuidle() on the PM domain containing the CPU core. That will cause the generic PM domains framework to treat that domain in a special way such that: * When all devices in the domain have been suspended and it is about to be turned off, the states of the devices will be saved, but power will not be removed from the domain. Instead, the "domain" cpuidle state will be enabled so that power can be removed from the domain when the CPU core is idle and the state has been chosen as the target by the cpuidle governor. * When the first I/O device in the domain is resumed and __pm_genpd_poweron(() is called for the first time after power has been removed from the domain, the "domain" cpuidle state will be disabled to avoid subsequent surprise power removals via cpuidle. The effective exit_latency value of the "domain" cpuidle state depends on the time needed to bring up the CPU core itself after restoring power to it as well as on the power on latency of the domain containing the CPU core. Thus the "domain" cpuidle state's exit_latency has to be recomputed every time the domain's power on latency is updated, which may happen every time power is restored to the domain, if the measured power on latency is greater than the latency stored in the corresponding generic_pm_domain structure. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-07-04 00:07:42 +07:00
{
return -ENOSYS;
}
static inline int pm_genpd_name_detach_cpuidle(const char *name)
{
return -ENOSYS;
}
static inline void pm_genpd_init(struct generic_pm_domain *genpd,
struct dev_power_governor *gov, bool is_off)
{
}
static inline int pm_genpd_poweron(struct generic_pm_domain *genpd)
{
return -ENOSYS;
}
static inline int pm_genpd_name_poweron(const char *domain_name)
{
return -ENOSYS;
}
static inline bool default_stop_ok(struct device *dev)
{
return false;
}
#define simple_qos_governor NULL
#define pm_domain_always_on_gov NULL
#endif
static inline int pm_genpd_add_device(struct generic_pm_domain *genpd,
struct device *dev)
{
return __pm_genpd_add_device(genpd, dev, NULL);
}
static inline int pm_genpd_of_add_device(struct device_node *genpd_node,
struct device *dev)
{
return __pm_genpd_of_add_device(genpd_node, dev, NULL);
}
static inline int pm_genpd_name_add_device(const char *domain_name,
struct device *dev)
{
return __pm_genpd_name_add_device(domain_name, dev, NULL);
}
static inline int pm_genpd_remove_callbacks(struct device *dev)
{
return __pm_genpd_remove_callbacks(dev, true);
}
#ifdef CONFIG_PM_GENERIC_DOMAINS_RUNTIME
extern void genpd_queue_power_off_work(struct generic_pm_domain *genpd);
extern void pm_genpd_poweroff_unused(void);
#else
static inline void genpd_queue_power_off_work(struct generic_pm_domain *gpd) {}
static inline void pm_genpd_poweroff_unused(void) {}
#endif
#ifdef CONFIG_PM_GENERIC_DOMAINS_SLEEP
extern void pm_genpd_syscore_switch(struct device *dev, bool suspend);
#else
static inline void pm_genpd_syscore_switch(struct device *dev, bool suspend) {}
#endif
static inline void pm_genpd_syscore_poweroff(struct device *dev)
{
pm_genpd_syscore_switch(dev, true);
}
static inline void pm_genpd_syscore_poweron(struct device *dev)
{
pm_genpd_syscore_switch(dev, false);
}
#endif /* _LINUX_PM_DOMAIN_H */