linux_dsm_epyc7002/arch/arm/kernel/vdso.c

269 lines
6.0 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
/*
* Adapted from arm64 version.
*
* Copyright (C) 2012 ARM Limited
* Copyright (C) 2015 Mentor Graphics Corporation.
*/
#include <linux/cache.h>
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
#include <linux/elf.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/of.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/timekeeper_internal.h>
#include <linux/vmalloc.h>
#include <asm/arch_timer.h>
#include <asm/barrier.h>
#include <asm/cacheflush.h>
#include <asm/page.h>
#include <asm/vdso.h>
#include <asm/vdso_datapage.h>
#include <clocksource/arm_arch_timer.h>
#include <vdso/helpers.h>
#include <vdso/vsyscall.h>
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
#define MAX_SYMNAME 64
static struct page **vdso_text_pagelist;
extern char vdso_start[], vdso_end[];
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
/* Total number of pages needed for the data and text portions of the VDSO. */
unsigned int vdso_total_pages __ro_after_init;
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
/*
* The VDSO data page.
*/
static union vdso_data_store vdso_data_store __page_aligned_data;
struct vdso_data *vdso_data = vdso_data_store.data;
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
static struct page *vdso_data_page __ro_after_init;
static const struct vm_special_mapping vdso_data_mapping = {
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
.name = "[vvar]",
.pages = &vdso_data_page,
};
static int vdso_mremap(const struct vm_special_mapping *sm,
struct vm_area_struct *new_vma)
{
unsigned long new_size = new_vma->vm_end - new_vma->vm_start;
unsigned long vdso_size;
/* without VVAR page */
vdso_size = (vdso_total_pages - 1) << PAGE_SHIFT;
if (vdso_size != new_size)
return -EINVAL;
current->mm->context.vdso = new_vma->vm_start;
return 0;
}
static struct vm_special_mapping vdso_text_mapping __ro_after_init = {
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
.name = "[vdso]",
.mremap = vdso_mremap,
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
};
struct elfinfo {
Elf32_Ehdr *hdr; /* ptr to ELF */
Elf32_Sym *dynsym; /* ptr to .dynsym section */
unsigned long dynsymsize; /* size of .dynsym section */
char *dynstr; /* ptr to .dynstr section */
};
/* Cached result of boot-time check for whether the arch timer exists,
* and if so, whether the virtual counter is useable.
*/
bool cntvct_ok __ro_after_init;
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
static bool __init cntvct_functional(void)
{
struct device_node *np;
bool ret = false;
if (!IS_ENABLED(CONFIG_ARM_ARCH_TIMER))
goto out;
/* The arm_arch_timer core should export
* arch_timer_use_virtual or similar so we don't have to do
* this.
*/
np = of_find_compatible_node(NULL, NULL, "arm,armv7-timer");
if (!np)
np = of_find_compatible_node(NULL, NULL, "arm,armv8-timer");
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
if (!np)
goto out_put;
if (of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
goto out_put;
ret = true;
out_put:
of_node_put(np);
out:
return ret;
}
static void * __init find_section(Elf32_Ehdr *ehdr, const char *name,
unsigned long *size)
{
Elf32_Shdr *sechdrs;
unsigned int i;
char *secnames;
/* Grab section headers and strings so we can tell who is who */
sechdrs = (void *)ehdr + ehdr->e_shoff;
secnames = (void *)ehdr + sechdrs[ehdr->e_shstrndx].sh_offset;
/* Find the section they want */
for (i = 1; i < ehdr->e_shnum; i++) {
if (strcmp(secnames + sechdrs[i].sh_name, name) == 0) {
if (size)
*size = sechdrs[i].sh_size;
return (void *)ehdr + sechdrs[i].sh_offset;
}
}
if (size)
*size = 0;
return NULL;
}
static Elf32_Sym * __init find_symbol(struct elfinfo *lib, const char *symname)
{
unsigned int i;
for (i = 0; i < (lib->dynsymsize / sizeof(Elf32_Sym)); i++) {
char name[MAX_SYMNAME], *c;
if (lib->dynsym[i].st_name == 0)
continue;
strlcpy(name, lib->dynstr + lib->dynsym[i].st_name,
MAX_SYMNAME);
c = strchr(name, '@');
if (c)
*c = 0;
if (strcmp(symname, name) == 0)
return &lib->dynsym[i];
}
return NULL;
}
static void __init vdso_nullpatch_one(struct elfinfo *lib, const char *symname)
{
Elf32_Sym *sym;
sym = find_symbol(lib, symname);
if (!sym)
return;
sym->st_name = 0;
}
static void __init patch_vdso(void *ehdr)
{
struct elfinfo einfo;
einfo = (struct elfinfo) {
.hdr = ehdr,
};
einfo.dynsym = find_section(einfo.hdr, ".dynsym", &einfo.dynsymsize);
einfo.dynstr = find_section(einfo.hdr, ".dynstr", NULL);
/* If the virtual counter is absent or non-functional we don't
* want programs to incur the slight additional overhead of
* dispatching through the VDSO only to fall back to syscalls.
*/
if (!cntvct_ok) {
vdso_nullpatch_one(&einfo, "__vdso_gettimeofday");
vdso_nullpatch_one(&einfo, "__vdso_clock_gettime");
}
}
static int __init vdso_init(void)
{
unsigned int text_pages;
int i;
if (memcmp(vdso_start, "\177ELF", 4)) {
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
pr_err("VDSO is not a valid ELF object!\n");
return -ENOEXEC;
}
text_pages = (vdso_end - vdso_start) >> PAGE_SHIFT;
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
/* Allocate the VDSO text pagelist */
vdso_text_pagelist = kcalloc(text_pages, sizeof(struct page *),
GFP_KERNEL);
if (vdso_text_pagelist == NULL)
return -ENOMEM;
/* Grab the VDSO data page. */
vdso_data_page = virt_to_page(vdso_data);
/* Grab the VDSO text pages. */
for (i = 0; i < text_pages; i++) {
struct page *page;
page = virt_to_page(vdso_start + i * PAGE_SIZE);
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
vdso_text_pagelist[i] = page;
}
vdso_text_mapping.pages = vdso_text_pagelist;
vdso_total_pages = 1; /* for the data/vvar page */
vdso_total_pages += text_pages;
cntvct_ok = cntvct_functional();
patch_vdso(vdso_start);
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
return 0;
}
arch_initcall(vdso_init);
static int install_vvar(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma;
vma = _install_special_mapping(mm, addr, PAGE_SIZE,
VM_READ | VM_MAYREAD,
&vdso_data_mapping);
return PTR_ERR_OR_ZERO(vma);
ARM: 8331/1: VDSO initialization, mapping, and synchronization Initialize the VDSO page list at boot, install the VDSO mapping at exec time, and update the data page during timer ticks. This code is not built if CONFIG_VDSO is not enabled. Account for the VDSO length when randomizing the offset from the stack. The [vdso] and [vvar] pages are placed immediately following the sigpage with separate _install_special_mapping calls. We want to "penalize" systems lacking the arch timer as little as possible. Previous versions of this code installed the VDSO unconditionally and unmodified, making it a measurably slower way for glibc to invoke the real syscalls on such systems. E.g. calling gettimeofday via glibc goes from ~560ns to ~630ns on i.MX6Q. If we can indicate to glibc that the time-related APIs in the VDSO are not accelerated, glibc can continue to invoke the syscalls directly instead of dispatching through the VDSO only to fall back to the slow path. Thus, if the architected timer is unusable for whatever reason, patch the VDSO at boot time so that symbol lookups for gettimeofday and clock_gettime return NULL. (This is similar to what powerpc does and borrows code from there.) This allows glibc to perform the syscall directly instead of passing control to the VDSO, which minimizes the penalty. In my measurements the time taken for a gettimeofday call via glibc goes from ~560ns to ~580ns (again on i.MX6Q), and this is solely due to adding a test and branch to glibc's gettimeofday syscall wrapper. An alternative to patching the VDSO at boot would be to not install the VDSO at all when the arch timer isn't usable. Another alternative is to include a separate "dummy" vdso.so without gettimeofday and clock_gettime, which would be selected at boot time. Either of these would get cumbersome if the VDSO were to gain support for an API such as getcpu which is unrelated to arch timer support. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-26 01:15:08 +07:00
}
/* assumes mmap_sem is write-locked */
void arm_install_vdso(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma;
unsigned long len;
mm->context.vdso = 0;
if (vdso_text_pagelist == NULL)
return;
if (install_vvar(mm, addr))
return;
/* Account for vvar page. */
addr += PAGE_SIZE;
len = (vdso_total_pages - 1) << PAGE_SHIFT;
vma = _install_special_mapping(mm, addr, len,
VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
&vdso_text_mapping);
if (!IS_ERR(vma))
mm->context.vdso = addr;
}