/*-*- Mode: C; c-basic-offset: 8 -*-*/ #include #include #include #include #include #include #include #include #include #include "manager.h" #include "hashmap.h" #include "macro.h" #include "strv.h" #include "log.h" Manager* manager_new(void) { Manager *m; sigset_t mask; struct epoll_event ev; if (!(m = new0(Manager, 1))) return NULL; m->signal_watch.fd = m->epoll_fd = -1; if (!(m->units = hashmap_new(string_hash_func, string_compare_func))) goto fail; if (!(m->jobs = hashmap_new(trivial_hash_func, trivial_compare_func))) goto fail; if (!(m->transaction_jobs = hashmap_new(trivial_hash_func, trivial_compare_func))) goto fail; if (!(m->watch_pids = hashmap_new(trivial_hash_func, trivial_compare_func))) goto fail; if ((m->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0) goto fail; assert_se(sigemptyset(&mask) == 0); assert_se(sigaddset(&mask, SIGCHLD) == 0); assert_se(sigaddset(&mask, SIGINT) == 0); assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0); m->signal_watch.type = WATCH_SIGNAL_FD; if ((m->signal_watch.fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC)) < 0) goto fail; zero(ev); ev.events = EPOLLIN; ev.data.ptr = &m->signal_watch; if (epoll_ctl(m->epoll_fd, EPOLL_CTL_ADD, m->signal_watch.fd, &ev) < 0) goto fail; return m; fail: manager_free(m); return NULL; } void manager_free(Manager *m) { Unit *u; Job *j; assert(m); while ((j = hashmap_first(m->transaction_jobs))) job_free(j); while ((u = hashmap_first(m->units))) unit_free(u); hashmap_free(m->units); hashmap_free(m->jobs); hashmap_free(m->transaction_jobs); hashmap_free(m->watch_pids); if (m->epoll_fd >= 0) close_nointr(m->epoll_fd); if (m->signal_watch.fd >= 0) close_nointr(m->signal_watch.fd); free(m); } static void transaction_delete_job(Manager *m, Job *j) { assert(m); assert(j); /* Deletes one job from the transaction */ manager_transaction_unlink_job(m, j); if (!j->installed) job_free(j); } static void transaction_delete_unit(Manager *m, Unit *u) { Job *j; /* Deletes all jobs associated with a certain unit from the * transaction */ while ((j = hashmap_get(m->transaction_jobs, u))) transaction_delete_job(m, j); } static void transaction_clean_dependencies(Manager *m) { Iterator i; Job *j; assert(m); /* Drops all dependencies of all installed jobs */ HASHMAP_FOREACH(j, m->jobs, i) { while (j->subject_list) job_dependency_free(j->subject_list); while (j->object_list) job_dependency_free(j->object_list); } assert(!m->transaction_anchor); } static void transaction_abort(Manager *m) { Job *j; assert(m); while ((j = hashmap_first(m->transaction_jobs))) if (j->installed) transaction_delete_job(m, j); else job_free(j); assert(hashmap_isempty(m->transaction_jobs)); transaction_clean_dependencies(m); } static void transaction_find_jobs_that_matter_to_anchor(Manager *m, Job *j, unsigned generation) { JobDependency *l; assert(m); /* A recursive sweep through the graph that marks all units * that matter to the anchor job, i.e. are directly or * indirectly a dependency of the anchor job via paths that * are fully marked as mattering. */ if (j) l = j->subject_list; else l = m->transaction_anchor; LIST_FOREACH(subject, l, l) { /* This link does not matter */ if (!l->matters) continue; /* This unit has already been marked */ if (l->object->generation == generation) continue; l->object->matters_to_anchor = true; l->object->generation = generation; transaction_find_jobs_that_matter_to_anchor(m, l->object, generation); } } static void transaction_merge_and_delete_job(Manager *m, Job *j, Job *other, JobType t) { JobDependency *l, *last; assert(j); assert(other); assert(j->unit == other->unit); assert(!j->installed); /* Merges 'other' into 'j' and then deletes j. */ j->type = t; j->state = JOB_WAITING; j->forced = j->forced || other->forced; j->matters_to_anchor = j->matters_to_anchor || other->matters_to_anchor; /* Patch us in as new owner of the JobDependency objects */ last = NULL; LIST_FOREACH(subject, l, other->subject_list) { assert(l->subject == other); l->subject = j; last = l; } /* Merge both lists */ if (last) { last->subject_next = j->subject_list; if (j->subject_list) j->subject_list->subject_prev = last; j->subject_list = other->subject_list; } /* Patch us in as new owner of the JobDependency objects */ last = NULL; LIST_FOREACH(object, l, other->object_list) { assert(l->object == other); l->object = j; last = l; } /* Merge both lists */ if (last) { last->object_next = j->object_list; if (j->object_list) j->object_list->object_prev = last; j->object_list = other->object_list; } /* Kill the other job */ other->subject_list = NULL; other->object_list = NULL; transaction_delete_job(m, other); } static int delete_one_unmergeable_job(Manager *m, Job *j) { Job *k; assert(j); /* Tries to delete one item in the linked list * j->transaction_next->transaction_next->... that conflicts * whith another one, in an attempt to make an inconsistent * transaction work. */ /* We rely here on the fact that if a merged with b does not * merge with c, either a or b merge with c neither */ LIST_FOREACH(transaction, j, j) LIST_FOREACH(transaction, k, j->transaction_next) { Job *d; /* Is this one mergeable? Then skip it */ if (job_type_is_mergeable(j->type, k->type)) continue; /* Ok, we found two that conflict, let's see if we can * drop one of them */ if (!j->matters_to_anchor) d = j; else if (!k->matters_to_anchor) d = k; else return -ENOEXEC; /* Ok, we can drop one, so let's do so. */ log_debug("Try to fix job merging by deleting job %s/%s", unit_id(d->unit), job_type_to_string(d->type)); transaction_delete_job(m, d); return 0; } return -EINVAL; } static int transaction_merge_jobs(Manager *m) { Job *j; Iterator i; int r; assert(m); /* First step, check whether any of the jobs for one specific * task conflict. If so, try to drop one of them. */ HASHMAP_FOREACH(j, m->transaction_jobs, i) { JobType t; Job *k; t = j->type; LIST_FOREACH(transaction, k, j->transaction_next) { if ((r = job_type_merge(&t, k->type)) >= 0) continue; /* OK, we could not merge all jobs for this * action. Let's see if we can get rid of one * of them */ if ((r = delete_one_unmergeable_job(m, j)) >= 0) /* Ok, we managed to drop one, now * let's ask our callers to call us * again after garbage collecting */ return -EAGAIN; /* We couldn't merge anything. Failure */ return r; } } /* Second step, merge the jobs. */ HASHMAP_FOREACH(j, m->transaction_jobs, i) { JobType t = j->type; Job *k; /* Merge all transactions */ LIST_FOREACH(transaction, k, j->transaction_next) assert_se(job_type_merge(&t, k->type) == 0); /* If an active job is mergeable, merge it too */ if (j->unit->meta.job) job_type_merge(&t, j->unit->meta.job->type); /* Might fail. Which is OK */ while ((k = j->transaction_next)) { if (j->installed) { transaction_merge_and_delete_job(m, k, j, t); j = k; } else transaction_merge_and_delete_job(m, j, k, t); } assert(!j->transaction_next); assert(!j->transaction_prev); } return 0; } static bool unit_matters_to_anchor(Unit *u, Job *j) { assert(u); assert(!j->transaction_prev); /* Checks whether at least one of the jobs for this unit * matters to the anchor. */ LIST_FOREACH(transaction, j, j) if (j->matters_to_anchor) return true; return false; } static int transaction_verify_order_one(Manager *m, Job *j, Job *from, unsigned generation) { Iterator i; Unit *u; int r; assert(m); assert(j); assert(!j->transaction_prev); /* Does a recursive sweep through the ordering graph, looking * for a cycle. If we find cycle we try to break it. */ /* Did we find a cycle? */ if (j->marker && j->generation == generation) { Job *k; /* So, we already have been here. We have a * cycle. Let's try to break it. We go backwards in * our path and try to find a suitable job to * remove. We use the marker to find our way back, * since smart how we are we stored our way back in * there. */ for (k = from; k; k = (k->generation == generation ? k->marker : NULL)) { if (!k->installed && !unit_matters_to_anchor(k->unit, k)) { /* Ok, we can drop this one, so let's * do so. */ log_debug("Breaking order cycle by deleting job %s/%s", unit_id(k->unit), job_type_to_string(k->type)); transaction_delete_unit(m, k->unit); return -EAGAIN; } /* Check if this in fact was the beginning of * the cycle */ if (k == j) break; } return -ENOEXEC; } /* Make the marker point to where we come from, so that we can * find our way backwards if we want to break a cycle */ j->marker = from; j->generation = generation; /* We assume that the the dependencies are bidirectional, and * hence can ignore UNIT_AFTER */ SET_FOREACH(u, j->unit->meta.dependencies[UNIT_BEFORE], i) { Job *o; /* Is there a job for this unit? */ if (!(o = hashmap_get(m->transaction_jobs, u))) /* Ok, there is no job for this in the * transaction, but maybe there is already one * running? */ if (!(o = u->meta.job)) continue; if ((r = transaction_verify_order_one(m, o, j, generation)) < 0) return r; } return 0; } static int transaction_verify_order(Manager *m, unsigned *generation) { Job *j; int r; Iterator i; assert(m); assert(generation); /* Check if the ordering graph is cyclic. If it is, try to fix * that up by dropping one of the jobs. */ HASHMAP_FOREACH(j, m->transaction_jobs, i) if ((r = transaction_verify_order_one(m, j, NULL, (*generation)++)) < 0) return r; return 0; } static void transaction_collect_garbage(Manager *m) { bool again; assert(m); /* Drop jobs that are not required by any other job */ do { Iterator i; Job *j; again = false; HASHMAP_FOREACH(j, m->transaction_jobs, i) { if (j->object_list) continue; log_debug("Garbage collecting job %s/%s", unit_id(j->unit), job_type_to_string(j->type)); transaction_delete_job(m, j); again = true; break; } } while (again); } static int transaction_is_destructive(Manager *m, JobMode mode) { Iterator i; Job *j; assert(m); /* Checks whether applying this transaction means that * existing jobs would be replaced */ HASHMAP_FOREACH(j, m->transaction_jobs, i) { /* Assume merged */ assert(!j->transaction_prev); assert(!j->transaction_next); if (j->unit->meta.job && j->unit->meta.job != j && !job_type_is_superset(j->type, j->unit->meta.job->type)) return -EEXIST; } return 0; } static void transaction_minimize_impact(Manager *m) { bool again; assert(m); /* Drops all unnecessary jobs that reverse already active jobs * or that stop a running service. */ do { Job *j; Iterator i; again = false; HASHMAP_FOREACH(j, m->transaction_jobs, i) { LIST_FOREACH(transaction, j, j) { /* If it matters, we shouldn't drop it */ if (j->matters_to_anchor) continue; /* Would this stop a running service? * Would this change an existing job? * If so, let's drop this entry */ if ((j->type != JOB_STOP || UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(j->unit))) && (!j->unit->meta.job || job_type_is_conflicting(j->type, j->unit->meta.job->state))) continue; /* Ok, let's get rid of this */ log_debug("Deleting %s/%s to minimize impact", unit_id(j->unit), job_type_to_string(j->type)); transaction_delete_job(m, j); again = true; break; } if (again) break; } } while (again); } static int transaction_apply(Manager *m, JobMode mode) { Iterator i; Job *j; int r; /* Moves the transaction jobs to the set of active jobs */ HASHMAP_FOREACH(j, m->transaction_jobs, i) { /* Assume merged */ assert(!j->transaction_prev); assert(!j->transaction_next); if (j->installed) continue; if ((r = hashmap_put(m->jobs, UINT32_TO_PTR(j->id), j)) < 0) goto rollback; } while ((j = hashmap_steal_first(m->transaction_jobs))) { if (j->installed) continue; if (j->unit->meta.job) job_free(j->unit->meta.job); j->unit->meta.job = j; j->installed = true; /* We're fully installed. Now let's free data we don't * need anymore. */ assert(!j->transaction_next); assert(!j->transaction_prev); job_schedule_run(j); } /* As last step, kill all remaining job dependencies. */ transaction_clean_dependencies(m); return 0; rollback: HASHMAP_FOREACH(j, m->transaction_jobs, i) { if (j->installed) continue; hashmap_remove(m->jobs, UINT32_TO_PTR(j->id)); } return r; } static int transaction_activate(Manager *m, JobMode mode) { int r; unsigned generation = 1; assert(m); /* This applies the changes recorded in transaction_jobs to * the actual list of jobs, if possible. */ /* First step: figure out which jobs matter */ transaction_find_jobs_that_matter_to_anchor(m, NULL, generation++); /* Second step: Try not to stop any running services if * we don't have to. Don't try to reverse running * jobs if we don't have to. */ transaction_minimize_impact(m); for (;;) { /* Third step: Let's remove unneeded jobs that might * be lurking. */ transaction_collect_garbage(m); /* Fourth step: verify order makes sense and correct * cycles if necessary and possible */ if ((r = transaction_verify_order(m, &generation)) >= 0) break; if (r != -EAGAIN) goto rollback; /* Let's see if the resulting transaction ordering * graph is still cyclic... */ } for (;;) { /* Fifth step: let's drop unmergeable entries if * necessary and possible, merge entries we can * merge */ if ((r = transaction_merge_jobs(m)) >= 0) break; if (r != -EAGAIN) goto rollback; /* Sixth step: an entry got dropped, let's garbage * collect its dependencies. */ transaction_collect_garbage(m); /* Let's see if the resulting transaction still has * unmergeable entries ... */ } /* Seventh step: check whether we can actually apply this */ if (mode == JOB_FAIL) if ((r = transaction_is_destructive(m, mode)) < 0) goto rollback; /* Eights step: apply changes */ if ((r = transaction_apply(m, mode)) < 0) goto rollback; assert(hashmap_isempty(m->transaction_jobs)); assert(!m->transaction_anchor); return 0; rollback: transaction_abort(m); return r; } static Job* transaction_add_one_job(Manager *m, JobType type, Unit *unit, bool force, bool *is_new) { Job *j, *f; int r; assert(m); assert(unit); /* Looks for an axisting prospective job and returns that. If * it doesn't exist it is created and added to the prospective * jobs list. */ f = hashmap_get(m->transaction_jobs, unit); LIST_FOREACH(transaction, j, f) { assert(j->unit == unit); if (j->type == type) { if (is_new) *is_new = false; return j; } } if (unit->meta.job && unit->meta.job->type == type) j = unit->meta.job; else if (!(j = job_new(m, type, unit))) return NULL; j->generation = 0; j->marker = NULL; j->matters_to_anchor = false; j->forced = force; LIST_PREPEND(Job, transaction, f, j); if ((r = hashmap_replace(m->transaction_jobs, unit, f)) < 0) { job_free(j); return NULL; } if (is_new) *is_new = true; return j; } void manager_transaction_unlink_job(Manager *m, Job *j) { assert(m); assert(j); if (j->transaction_prev) j->transaction_prev->transaction_next = j->transaction_next; else if (j->transaction_next) hashmap_replace(m->transaction_jobs, j->unit, j->transaction_next); else hashmap_remove_value(m->transaction_jobs, j->unit, j); if (j->transaction_next) j->transaction_next->transaction_prev = j->transaction_prev; j->transaction_prev = j->transaction_next = NULL; while (j->subject_list) job_dependency_free(j->subject_list); while (j->object_list) { Job *other = j->object_list->matters ? j->object_list->subject : NULL; job_dependency_free(j->object_list); if (other) { log_debug("Deleting job %s/%s as dependency of job %s/%s", unit_id(other->unit), job_type_to_string(other->type), unit_id(j->unit), job_type_to_string(j->type)); transaction_delete_job(m, other); } } } static int transaction_add_job_and_dependencies(Manager *m, JobType type, Unit *unit, Job *by, bool matters, bool force, Job **_ret) { Job *ret; Iterator i; Unit *dep; int r; bool is_new; assert(m); assert(type < _JOB_TYPE_MAX); assert(unit); if (unit->meta.load_state != UNIT_LOADED) return -EINVAL; if (!unit_job_is_applicable(unit, type)) return -EBADR; /* First add the job. */ if (!(ret = transaction_add_one_job(m, type, unit, force, &is_new))) return -ENOMEM; /* Then, add a link to the job. */ if (!job_dependency_new(by, ret, matters)) return -ENOMEM; if (is_new) { /* Finally, recursively add in all dependencies. */ if (type == JOB_START || type == JOB_RELOAD_OR_START) { SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_REQUIRES], i) if ((r = transaction_add_job_and_dependencies(m, JOB_START, dep, ret, true, force, NULL)) < 0 && r != -EBADR) goto fail; SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_SOFT_REQUIRES], i) if ((r = transaction_add_job_and_dependencies(m, JOB_START, dep, ret, !force, force, NULL)) < 0 && r != -EBADR) goto fail; SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_WANTS], i) if ((r = transaction_add_job_and_dependencies(m, JOB_START, dep, ret, false, force, NULL)) < 0 && r != -EBADR) goto fail; SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_REQUISITE], i) if ((r = transaction_add_job_and_dependencies(m, JOB_VERIFY_ACTIVE, dep, ret, true, force, NULL)) < 0 && r != -EBADR) goto fail; SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_SOFT_REQUISITE], i) if ((r = transaction_add_job_and_dependencies(m, JOB_VERIFY_ACTIVE, dep, ret, !force, force, NULL)) < 0 && r != -EBADR) goto fail; SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_CONFLICTS], i) if ((r = transaction_add_job_and_dependencies(m, JOB_STOP, dep, ret, true, force, NULL)) < 0 && r != -EBADR) goto fail; } else if (type == JOB_STOP || type == JOB_RESTART || type == JOB_TRY_RESTART) { SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_REQUIRED_BY], i) if ((r = transaction_add_job_and_dependencies(m, type, dep, ret, true, force, NULL)) < 0 && r != -EBADR) goto fail; } /* JOB_VERIFY_STARTED, JOB_RELOAD require no dependency handling */ } return 0; fail: return r; } int manager_add_job(Manager *m, JobType type, Unit *unit, JobMode mode, bool force, Job **_ret) { int r; Job *ret; assert(m); assert(type < _JOB_TYPE_MAX); assert(unit); assert(mode < _JOB_MODE_MAX); if ((r = transaction_add_job_and_dependencies(m, type, unit, NULL, true, force, &ret))) { transaction_abort(m); return r; } if ((r = transaction_activate(m, mode)) < 0) return r; if (_ret) *_ret = ret; return 0; } Job *manager_get_job(Manager *m, uint32_t id) { assert(m); return hashmap_get(m->jobs, UINT32_TO_PTR(id)); } Unit *manager_get_unit(Manager *m, const char *name) { assert(m); assert(name); return hashmap_get(m->units, name); } static void dispatch_load_queue(Manager *m) { Meta *meta; assert(m); /* Make sure we are not run recursively */ if (m->dispatching_load_queue) return; m->dispatching_load_queue = true; /* Dispatches the load queue. Takes a unit from the queue and * tries to load its data until the queue is empty */ while ((meta = m->load_queue)) { assert(meta->in_load_queue); unit_load(UNIT(meta)); } m->dispatching_load_queue = false; } int manager_load_unit(Manager *m, const char *path, Unit **_ret) { Unit *ret; int r; const char *name; assert(m); assert(path); assert(_ret); /* This will load the service information files, but not actually * start any services or anything. */ name = file_name_from_path(path); if ((ret = manager_get_unit(m, name))) { *_ret = ret; return 0; } if (!(ret = unit_new(m))) return -ENOMEM; if (is_path(path)) { if (!(ret->meta.load_path = strdup(path))) { unit_free(ret); return -ENOMEM; } } if ((r = unit_add_name(ret, name)) < 0) { unit_free(ret); return r; } unit_add_to_load_queue(ret); dispatch_load_queue(m); *_ret = ret; return 0; } void manager_dump_jobs(Manager *s, FILE *f, const char *prefix) { Iterator i; Job *j; assert(s); assert(f); HASHMAP_FOREACH(j, s->jobs, i) job_dump(j, f, prefix); } void manager_dump_units(Manager *s, FILE *f, const char *prefix) { Iterator i; Unit *u; const char *t; assert(s); assert(f); HASHMAP_FOREACH_KEY(u, t, s->units, i) if (unit_id(u) == t) unit_dump(u, f, prefix); } void manager_clear_jobs(Manager *m) { Job *j; assert(m); transaction_abort(m); while ((j = hashmap_first(m->jobs))) job_free(j); } void manager_dispatch_run_queue(Manager *m) { Job *j; if (m->dispatching_run_queue) return; m->dispatching_run_queue = true; while ((j = m->run_queue)) { assert(j->installed); assert(j->in_run_queue); job_run_and_invalidate(j); } m->dispatching_run_queue = false; } static int manager_dispatch_sigchld(Manager *m) { assert(m); log_debug("dispatching SIGCHLD"); for (;;) { siginfo_t si; Unit *u; zero(si); if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG) < 0) { if (errno == ECHILD) break; return -errno; } if (si.si_pid == 0) break; if (si.si_code != CLD_EXITED && si.si_code != CLD_KILLED && si.si_code != CLD_DUMPED) continue; log_debug("child %llu died (code=%s, status=%i)", (long long unsigned) si.si_pid, sigchld_code(si.si_code), si.si_status); if (!(u = hashmap_remove(m->watch_pids, UINT32_TO_PTR(si.si_pid)))) continue; UNIT_VTABLE(u)->sigchld_event(u, si.si_pid, si.si_code, si.si_status); } return 0; } static int manager_process_signal_fd(Manager *m, bool *quit) { ssize_t n; struct signalfd_siginfo sfsi; bool sigchld = false; assert(m); for (;;) { if ((n = read(m->signal_watch.fd, &sfsi, sizeof(sfsi))) != sizeof(sfsi)) { if (n >= 0) return -EIO; if (errno == EAGAIN) break; return -errno; } switch (sfsi.ssi_signo) { case SIGCHLD: sigchld = true; break; case SIGINT: *quit = true; return 0; } } if (sigchld) return manager_dispatch_sigchld(m); return 0; } static int process_event(Manager *m, struct epoll_event *ev, bool *quit) { int r; Watch *w; assert(m); assert(ev); assert(w = ev->data.ptr); switch (w->type) { case WATCH_SIGNAL_FD: /* An incoming signal? */ if (ev->events != POLLIN) return -EINVAL; if ((r = manager_process_signal_fd(m, quit)) < 0) return r; break; case WATCH_FD: /* Some fd event, to be dispatched to the units */ UNIT_VTABLE(w->unit)->fd_event(w->unit, w->fd, ev->events, w); break; case WATCH_TIMER: { uint64_t v; ssize_t k; /* Some timer event, to be dispatched to the units */ if ((k = read(ev->data.fd, &v, sizeof(v))) != sizeof(v)) { if (k < 0 && (errno == EINTR || errno == EAGAIN)) break; return k < 0 ? -errno : -EIO; } UNIT_VTABLE(w->unit)->timer_event(w->unit, v, w); break; } default: assert_not_reached("Unknown epoll event type."); } return 0; } int manager_loop(Manager *m) { int r; bool quit = false; assert(m); for (;;) { struct epoll_event events[32]; int n, i; manager_dispatch_run_queue(m); if ((n = epoll_wait(m->epoll_fd, events, ELEMENTSOF(events), -1)) < 0) { if (errno == -EINTR) continue; return -errno; } for (i = 0; i < n; i++) { if ((r = process_event(m, events + i, &quit)) < 0) return r; if (quit) return 0; } } }